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Lebesgue Integral on Rn, Differentiation on Rn

Instructor: Vishnu Boddeti Scribe: Samia Islam, Mk Bashar, Patrick Ancel

1 The Lebesgue Integral on Rn

Intuition: Riemann Integral:

• bounded

• continuous

• finite set of rectangles

Lebesgue Integral:

• not bounded

• need not be continuous

• countable sets
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Definition 1 A function f : (Ω1,A1) → (Ω2,A2) between two measurable spaces is called measurable
if pre-image of any measurable set is measurable:

∀A2 ∈ A : f−1(A2) ∈ A1 where, f−1(A2) := {x ∈ Ω1|f(x) ∈ A2}

(Ω,A), (R,B(R))

Characteristic function (also indicator function)

χA : Ω → R, χA(ω) :=

{
1, ω ∈ A

0, ω /∈ A

Definition 2 ϕ : Rn → R is called a simple funciton if there exist measurable sets Ai ⊂ Rn, ci ∈ R
such that,

ϕ(x) =

n∑
i=1

ciχAi
(x)

I = c1µ(A1) + c2µ(A2) + c3µ(A3)

ϕ(x) = c1χA1
(x) + c2χA2

(x) + c3χA3
(x)

I(ϕ) =

∫
ϕdµ =

n∑
i=1

ciµ(Ai) → Lebesgue integral for simple function

Problem : 3 · ∞ − 2 · ∞ ??

For a function f+ : Rn → [0,∞) we define its Lebesgue integral as,

∫
f+dµ = sup

{∫
ϕdµ|ϕ ≤ f, ϕ is simple

}
(might be ∞)

For a general function f : Rn → R we split the function into positive and negative parts:

f = f+ − f−, f+ ≥ 0, f− ≥ 0 where, f+ =

{
f(x), f(x) ≥ 0

0 otherwise
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Note: f+, f− are measurable if f is measurable. If both f+ and f− satisfy
∫
f+dµ < ∞ and∫

f−dµ < ∞, then we call f integrable and define

∫
fdµ =

∫
f+dµ−

∫
f−dµ

Much more powerful notion than Reimann Integral.

Example:
∫
χQdµ = 1 · µ(Q) = 0

2 Two Important Theorems

Theorem 3 Monotone Convergence: Consider a sequence of functions fn : Rn → [0,∞) that is
pointwise non-decreasing: ∀x ∈ Rn, fk+1(x) ≥ fk(x). Assume that all fk are measurable, and that
the pointwise limit exists ∀x : limfk(x) := f(x). Then,∫

lim
k→∞

fk(x)dx = limk→∞

∫
fk(x)dx

Theorem 4 Dominated Convergence: fk : B → R, |fk(x)| ≤ g(x) on B, g(x) is integrable.
Assume that the pointwise limit exists: ∀x ∈ B, f(x) := limn→∞ fn(x). Then,

∫
lim
k→∞

fk(x)dx = lim
k→∞

∫
fk(x)dx
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3 Partial Derivatives on Rn

Consider a function f : Rn → R

Definition 5 The function f is called partially differentiable with respect to variable xj at point
ξ ∈ Rn if the function

g : R → R

xj 7→ g(xj) := f(ξ1, ξ2, . . . , ξj−1, xj , ξj+1, . . . , ξn)

is differentiable at ξj ∈ R. All variables aside from xj are treated as constants, making g a function
of one variable.

The notation for the partial derivative is:

∂f(ξ)

∂xj
= lim

h→0

f (ξ + ejh)− f(ξ)

h

Here, h is a scalar, and ej is the j-th unit vector, which has a 1 at the j-th index and zeros everywhere
else.

Example: Consider the function f : R2 → R where f(x) = x2
1 + x2

2x1. The derivative with respect
to x1 is computed by treating x2 as a constant, so ∂f

∂x1
= 2x1 + x2

2.

If all partial derivatives exist, then the vector of all partial derivatives is called the gradient.

grad(f)(ξ) = ∇f(ξ) =


∂f(ξ)
∂x1

...
∂f(ξ)
∂xn

 ∈ Rn

If f : Rn → Rm, we can decompose f into its m component functions.

f =

 f1...
fm


We define the Jacobian matrix:

Df(x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 =

—(∇f1(x))
T—

...
—(∇fm(x))T—

 ∈ Rm×n

The i-th row of the Jacobian matrix is the gradient of fi.

Caution: Even if all partial derivatives exist at ξ, we do not know if f is continuous at ξ.

Example: Consider f : R2 → R.

f(x, y) =

{
xy

x2+y2 if (x, y) ̸= (0, 0)

0 if x = y = 0
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For (x, y) ̸= (0, 0),

∇f(x, y) =

(
y

y2 − x2

(x2 + y2)
2 , x

x2 − y2

(x2 + y2)
2

)
∇f(0, 0) = 0 since for all x, f(x, 0) = 0, and for all y, f(0, y) = 0. But f is not continuous at (0, 0).

4 Total Derivative

Let f : Rn → Rm and ξ ∈ U . The function f is differentiable at ξ if there exists a linear mapping
L : Rn → Rm such that for h ∈ Rn,

f(ξ + h)− f(ξ) = L(h) + r(h)

with lim
h→0

r(h)

|h|
= 0

That is, f is differentiable at ξ if it can be approximated locally by a linear mapping. The difference
between f(ξ+ h) and f(ξ) is a linear mapping plus residue r(h). The residue goes to zero as h goes
to zero.

Figure 1: A linear mapping approximating a function in 2D (left) and in 3D (right).

Intuition: f is “locally linear”

Theorem 6 Let f : Rn → R be differentiable at ξ. Then f is continuous at ξ, and the linear
functional L coincides with the gradient: f(ξ+h)−f(ξ) =

∑n
j=1

∂f
∂xj

(ξ) · hj+r(h) = ⟨∇f(ξ), h⟩+r(h)

If f : Rn → Rm, it is differentiable if all coordinate functions f1, f2, . . . , fm are differentiable. Then
all partial derivatives exist and L(h) = (Jacobian matrix) · h.

Theorem 7 If all partial derivatives exist and are all continuous, then f is differentiable.

Warning: If partial derivatives exist, but are not continuous, then f does not need to be differen-
tiable.
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5 Directional Derivatives

The idea is to compute derivatives along an arbitrary direction, not just the coordinate axes.

Definition 8 Assume f : Rn → R is continuously differentiable and v ∈ Rn with ∥v∥ = 1. The
directional derivative of f at ξ in the direction of v is defined as,

Dvf(ξ) = lim
t→0

f(ξ + tv)− f(ξ)

t

In this equation, t ∈ R is a scalar and v ∈ Rn is a unit vector corresponding to a direction.

Theorem 9 Let f : Rn → R be differentiable at ξ. Then all the directional derivatives exist, and
we can compute them as,

Dvf(ξ) = (∇f(ξ))
T
v =

n∑
i=1

vi
∂f

∂xi
(ξ)

In this equation, vi ∈ R is a scalar, and v is a vector.

The partial derivative in any direction can be expressed as a weighted linear combination of deriva-
tives along the axes.

The largest value of all directional derivatives is attained in the direction of the gradient: v = ∇f(ξ)
∥∇f(ξ)∥
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