CSE 840: Computational Foundations of Artificial Intelligence November 01, 2023

Lebesgue Integral on R", Differentiation on R"
Instructor: Vishnu Boddeti Scribe: Samia Islam, Mk Bashar, Patrick Ancel

1 The Lebesgue Integral on R"

Intuition: Riemann Integral:

e bounded
e continuous

e finite set of rectangles
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Lebesgue Integral:
e not bounded
e need not be continuous
e countable sets
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Definition 1 A function f : (Q1,A1) — (Q2, Ay) between two measurable spaces is called measurable
if pre-image of any measurable set is measurable:

VAy € A: f1(Ay) € Ay where, f1(Ag) := {z € V|f(x) € A}
(€, A), (R, B(R))
Characteristic function (also indicator function)

1, weAd

Q= R, =
XA xa(w) {O, v A

Definition 2 ¢ : R™ — R is called a simple funciton if there exist measurable sets A; C R", ¢; € R

such that,
n
= Z CiXA; ({E)
i=1

I'=cip(Ar) + cap(A2) + cap(As)

1

¢(x) = crxa, (2) + caxa, () + caxas(x)

I(¢) / odp = Z cip(A4;) — Lebesgue integral for simple function

Problem : 3-0c0—2-00 77

For a function f*:R"™ — [0,00) we define its Lebesgue integral as,

/ fdp = sup { [odnto< 1.1 simple}

For a general function f : R™ — R we split the function into positive and negative parts:

(might be o)

f(x), flz)=0

0 otherwise

f:f+_f_ﬂ f+207f_20 Whereaf+:{
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Note: fT,f~ are measurable if f is measurable. If both f* and f~ satisfy [ fTdu < oo and
J f~dp < oo, then we call f integrable and define

[ tdn= [ rrdu- [ 5 i

Much more powerful notion than Reimann Integral.

Example: [ xodp=1-p(Q) =0

2 Two Important Theorems

Theorem 3 Monotone Convergence: Consider a sequence of functions f, : R™ — [0,00) that is
pointwise non-decreasing: Vo € R", fr11(x) > fr(x). Assume that all fi, are measurable, and that
the pointwise limit exists Vo : lim fi(x) := f(z). Then,

/klin;o fk(x)dx:limk_,oo/fk(z)dx

X

Theorem 4 Dominated Convergence: f;, : B — R,|fi(x)] < g(z) on B,g(x) is integrable.
Assume that the pointwise limit exists: Yo € B, f(x) := limy, 00 fn(x). Then,

/kliﬁ\m fre(z)dz = lem fr(z)dx
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3 Partial Derivatives on R"
Consider a function f:R® — R

Definition 5 The function f is called partially differentiable with respect to variable x; at point
& € R™ if the function

g:R—=R
Zj — g(x]) = f(€17£27"'7£j—1axj7§j+1a"'7§n)

is differentiable at & € R. All variables aside from x; are treated as constants, making g a function
of one variable.

The notation for the partial derivative is:

OF() _ . f(E+eih) = £(€)

(%cj h—0 h

Here, h is a scalar, and e; is the j-th unit vector, which has a 1 at the j-th index and zeros everywhere
else.

Example: Consider the function f : R? — R where f(z) = 22 + 23x;. The derivative with respect
to x1 is computed by treating x- as a constant, so é%fl =27 + 23

If all partial derivatives exist, then the vector of all partial derivatives is called the gradient.

grad(f)(§) =Vf(§) = | : | €R"

Ox .y

If f:R™ - R™, we can decompose f into its m component functions.

fi
r=1:
fm
We define the Jacobian matrix:

of af
o wt] [(VA@)T—
Ofm Afm _ T
Yo . Ua| | (Vhu)

The i-th row of the Jacobian matrix is the gradient of f;.
Caution: Even if all partial derivatives exist at £, we do not know if f is continuous at &.

Example: Consider f: R? — R.

iz i (z, 0,0
f(x,y):{(:)vw e 7 00
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For (z,y) # (0,0),

y? — 22

22— 2
PR 2
(@2 +y2)" (22 +9?)
V£(0,0) = 0 since for all z, f(z,0) = 0, and for all y, f(0,y) = 0. But f is not continuous at (0,0).

Vf(x,y) = (y

4 Total Derivative

Let f: R® - R™ and £ € U. The function f is differentiable at £ if there exists a linear mapping
L :R™ — R™ such that for h € R™,

f&+h) = f(&) = L(h) +r(h)

with lim @ =0
h—0 |h|
That is, f is differentiable at £ if it can be approximated locally by a linear mapping. The difference
between f(€ + h) and f(£) is a linear mapping plus residue r(h). The residue goes to zero as h goes

to zero.

S 7_.
7

1
Figure 1: A linear mapping approximating a function in 2D (left) and in 3D (right).

Intuition: f is “locally linear”

Theorem 6 Let f : R" — R be differentiable at €. Then f is continuous at &, and the linear
functional L coincides with the gradient: f(+h)—f(€) = Z?zl 887];(5) ~hj+r(h) = (Vf(&),h)+r(h)

If f:R™ — R™, it is differentiable if all coordinate functions fi, fo,..., fmn are differentiable. Then
all partial derivatives exist and L(h) = (Jacobian matrix) - h.

Theorem 7 If all partial derivatives exist and are all continuous, then f is differentiable.

Warning: If partial derivatives exist, but are not continuous, then f does not need to be differen-
tiable.
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5 Directional Derivatives
The idea is to compute derivatives along an arbitrary direction, not just the coordinate axes.

Definition 8 Assume f : R™ — R is continuously differentiable and v € R™ with ||v|| = 1. The
directional deriwative of f at & in the direction of v is defined as,

Duf(€) = lim fE+tv)— f(€)

t—0 t

In this equation, ¢ € R is a scalar and v € R" is a unit vector corresponding to a direction.

Theorem 9 Let f : R™ — R be differentiable at £&. Then all the directional derivatives exist, and
we can compute them as,

of
8(Ei

n
Dyf(€) = (VI(©) v=2 vig (&)
i=1
In this equation, v; € R is a scalar, and v is a vector.

The partial derivative in any direction can be expressed as a weighted linear combination of deriva-
tives along the axes.

The largest value of all directional derivatives is attained in the direction of the gradient: v = %
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