CSE 840: Computational Foundations of Artificial Intelligence November 01, 2023
 Lebesgue Integral on R^{n}, Differentiation on R^{n}
 Instructor: Vishnu Boddeti
 Scribe: Samia Islam, Mk Bashar, Patrick Ancel

1 The Lebesgue Integral on \mathbb{R}^{n}

Intuition: Riemann Integral:

- bounded
- continuous
- finite set of rectangles

Lebesgue Integral:

- not bounded
- need not be continuous
- countable sets

Definition 1 A function $f:\left(\Omega_{1}, \mathbb{A}_{1}\right) \rightarrow\left(\Omega_{2}, \mathbb{A}_{2}\right)$ between two measurable spaces is called measurable if pre-image of any measurable set is measurable:

$$
\forall A_{2} \in \mathbb{A}: f^{-1}\left(A_{2}\right) \in \mathbb{A}_{1} \quad \text { where, } f^{-1}\left(A_{2}\right):=\left\{x \in \Omega_{1} \mid f(x) \in A_{2}\right\}
$$

$(\Omega, \mathbb{A}),(\mathbb{R}, \mathbb{B}(\mathbb{R}))$
Characteristic function (also indicator function)

$$
\chi_{A}: \Omega \rightarrow \mathbb{R}, \chi_{A}(\omega):= \begin{cases}1, & \omega \in A \\ 0, & \omega \notin A\end{cases}
$$

Definition $2 \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a simple funciton if there exist measurable sets $A_{i} \subset \mathbb{R}^{n}$, $c_{i} \in \mathbb{R}$ such that,

$$
\begin{gathered}
\phi(x)=\sum_{i=1}^{n} c_{i} \chi_{A_{i}}(x) \\
I=c_{1} \mu\left(A_{1}\right)+c_{2} \mu\left(A_{2}\right)+c_{3} \mu\left(A_{3}\right)
\end{gathered}
$$

$$
\phi(x)=c_{1} \chi_{A_{1}}(x)+c_{2} \chi_{A_{2}}(x)+c_{3} \chi_{A_{3}}(x)
$$

$$
I(\phi)=\int \phi d \mu=\sum_{i=1}^{n} c_{i} \mu\left(A_{i}\right) \rightarrow \text { Lebesgue integral for simple function }
$$

Problem : $3 \cdot \infty-2 \cdot \infty$??
For a function $f^{+}: \mathbb{R}^{n} \rightarrow[0, \infty)$ we define its Lebesgue integral as,

$$
\int f^{+} d \mu=\sup \left\{\int \phi d \mu \mid \phi \leq f, \phi \text { is simple }\right\}
$$

(might be ∞)
For a general function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we split the function into positive and negative parts:

$$
f=f^{+}-f^{-}, \quad f^{+} \geq 0, f^{-} \geq 0 \quad \text { where, } f^{+}= \begin{cases}f(x), & f(x) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Note: f^{+}, f^{-}are measurable if f is measurable. If both f^{+}and f^{-}satisfy $\int f^{+} d \mu<\infty$ and $\int f^{-} d \mu<\infty$, then we call f integrable and define

$$
\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu
$$

Much more powerful notion than Reimann Integral.
Example: $\int \chi_{\mathbb{Q}} d \mu=1 \cdot \mu(\mathbb{Q})=0$

2 Two Important Theorems

Theorem 3 Monotone Convergence: Consider a sequence of functions $f_{n}: \mathbb{R}^{n} \rightarrow[0, \infty)$ that is pointwise non-decreasing: $\forall x \in \mathbb{R}^{n}, f_{k+1}(x) \geq f_{k}(x)$. Assume that all f_{k} are measurable, and that the pointwise limit exists $\forall x: \lim f_{k}(x):=f(x)$. Then,

$$
\int \lim _{k \rightarrow \infty} f_{k}(x) d x=\lim _{k \rightarrow \infty} \int f_{k}(x) d x
$$

Theorem 4 Dominated Convergence: $f_{k}: \mathbb{B} \rightarrow \mathbb{R},\left|f_{k}(x)\right| \leq g(x)$ on $\mathbb{B}, g(x)$ is integrable. Assume that the pointwise limit exists: $\forall x \in \mathbb{B}, f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$. Then,

$$
\int \lim _{k \rightarrow \infty} f_{k}(x) d x=\lim _{k \rightarrow \infty} \int f_{k}(x) d x
$$

3 Partial Derivatives on \mathbb{R}^{n}

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Definition 5 The function f is called partially differentiable with respect to variable x_{j} at point $\xi \in \mathbb{R}^{n}$ if the function

$$
\begin{gathered}
g: \mathbb{R} \rightarrow \mathbb{R} \\
x_{j} \mapsto g\left(x_{j}\right):=f\left(\xi_{1}, \xi_{2}, \ldots, \xi_{j-1}, x_{j}, \xi_{j+1}, \ldots, \xi_{n}\right)
\end{gathered}
$$

is differentiable at $\xi_{j} \in \mathbb{R}$. All variables aside from x_{j} are treated as constants, making g a function of one variable.

The notation for the partial derivative is:

$$
\frac{\partial f(\xi)}{\partial x_{j}}=\lim _{h \rightarrow 0} \frac{f\left(\xi+\mathbf{e}_{j} h\right)-f(\xi)}{h}
$$

Here, h is a scalar, and \mathbf{e}_{j} is the j-th unit vector, which has a 1 at the j-th index and zeros everywhere else.
Example: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x)=x_{1}^{2}+x_{2}^{2} x_{1}$. The derivative with respect to x_{1} is computed by treating x_{2} as a constant, so $\frac{\partial f}{\partial x_{1}}=2 x_{1}+x_{2}^{2}$.

If all partial derivatives exist, then the vector of all partial derivatives is called the gradient.

$$
\operatorname{grad}(f)(\xi)=\nabla f(\xi)=\left[\begin{array}{c}
\frac{\partial f(\xi)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(\xi)}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{n}
$$

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can decompose f into its m component functions.

$$
f=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right]
$$

We define the Jacobian matrix:

$$
D f(x)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
-\left(\nabla f_{1}(x)\right)^{T}- \\
\vdots \\
-\left(\nabla f_{m}(x)\right)^{T}-
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

The i-th row of the Jacobian matrix is the gradient of f_{i}.
Caution: Even if all partial derivatives exist at ξ, we do not know if f is continuous at ξ.
Example: Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if } x=y=0\end{cases}
$$

For $(x, y) \neq(0,0)$,

$$
\nabla f(x, y)=\left(y \frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, x \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

$\nabla f(0,0)=0$ since for all $x, f(x, 0)=0$, and for all $y, f(0, y)=0$. But f is not continuous at $(0,0)$.

4 Total Derivative

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\xi \in U$. The function f is differentiable at ξ if there exists a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for $h \in \mathbb{R}^{n}$,

$$
\begin{gathered}
f(\xi+h)-f(\xi)=L(h)+r(h) \\
\text { with } \lim _{h \rightarrow 0} \frac{r(h)}{|h|}=0
\end{gathered}
$$

That is, f is differentiable at ξ if it can be approximated locally by a linear mapping. The difference between $f(\xi+h)$ and $f(\xi)$ is a linear mapping plus residue $r(h)$. The residue goes to zero as h goes to zero.

Figure 1: A linear mapping approximating a function in 2D (left) and in 3D (right).

Intuition: f is "locally linear"

Theorem 6 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at ξ. Then f is continuous at ξ, and the linear functional L coincides with the gradient: $f(\xi+h)-f(\xi)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\xi) \cdot h_{j}+r(h)=\langle\nabla f(\xi), h\rangle+r(h)$

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, it is differentiable if all coordinate functions $f_{1}, f_{2}, \ldots, f_{m}$ are differentiable. Then all partial derivatives exist and $L(h)=($ Jacobian matrix $) \cdot h$.

Theorem 7 If all partial derivatives exist and are all continuous, then f is differentiable.

Warning: If partial derivatives exist, but are not continuous, then f does not need to be differentiable.

5 Directional Derivatives

The idea is to compute derivatives along an arbitrary direction, not just the coordinate axes.

Definition 8 Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and $\mathbf{v} \in \mathbb{R}^{n}$ with $\|\mathbf{v}\|=1$. The directional derivative of f at ξ in the direction of \mathbf{v} is defined as,

$$
D_{\mathbf{v}} f(\xi)=\lim _{t \rightarrow 0} \frac{f(\xi+t \mathbf{v})-f(\xi)}{t}
$$

In this equation, $t \in \mathbb{R}$ is a scalar and $\mathbf{v} \in \mathbb{R}^{n}$ is a unit vector corresponding to a direction.

Theorem 9 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at ξ. Then all the directional derivatives exist, and we can compute them as,

$$
D_{\mathbf{v}} f(\xi)=(\nabla f(\xi))^{T} \mathbf{v}=\sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial x_{i}}(\xi)
$$

In this equation, $v_{i} \in \mathbb{R}$ is a scalar, and \mathbf{v} is a vector.
The partial derivative in any direction can be expressed as a weighted linear combination of derivatives along the axes.

The largest value of all directional derivatives is attained in the direction of the gradient: $\mathbf{v}=\frac{\nabla f(\xi)}{\|\nabla f(\xi)\|}$

