CSE 840: Computational Foundations of Artificial Intelligence Nov 06, 2023

Higher Order Derivatives, Minima/Maxima, Matrix/Vector Calculus

Instructor: Vishnu Boddeti Scribe: Gaya Kanagaraj, Thad Greiner

Higher Order Derivatives

Definition 1 (Higher - order derivatives) refer to the derivatives of derivatives, taking higher-order deriva-
tives involves repeatedly finding the derivative of a function. Example: the second derivative is the deriva-
tive of the first derivative, the third derivative is the derivative of the second derivative, and so on.

o .

Consider f:R" — R, assume it is differentiable, so all partial derivatives 7% :R"” — R exist. If this function

is differentiable, we can take its derivative: a 5 ( ax; ) aj g; These are called second order partial deriva-

tives.

P f P f

/\ In general, we cannot change the order of derivatives: xiox; 7 Gxj0m

Example:
3
Xy
foy) = 4
YRR -xD) xyBxE+ YA
Vi, y) =( 21722 (24P )
Have:
o 0.1 = 9.9f _
ax(O,y)—y vy, ay(ax) 1
of 3 0 of
ay(x,O)—O vx, ax(ay)—o

we can see that 1 #0.

Definition 2 (Continuously Differentiable:) We say that f : R" — R is continuously differentiable if all
partial derivatives exist and are continuous.
We say that fis twice continuously differentiable if f is continuously differentiable and all its partial deriva-

tives g—i are again continuously differentiable.

Analogously: k times continuously differentiable
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Notation:
¢kR" RM) = { f:R" — R™|k times continuously differentiable}
€ (R",R™) = {f : R" — R™|oo often continuously differentiable}

Theorem 3 (Schwartz) Assume that fis twice continuously differentiable. Then we can exchange the order
Af o2 f

in which we take partial derivatives: 5 ;= owjox;

Analogously: k times continuously differentiable = can exchange order of first k partial derivatives.

/\ Caution about derivatives:

fiR"—>R — function
0
Vf:R"—R" — first derivatives(a—f): n partial derivatives
X;
62
Hf :R" - R"" — second derivatives( Of ): n? partial derivatives
Xi Xj

Definition 4 (Hessian Matrix) f:R" — R, then we define the Hessian of f at point x by,
i ..
(Hf)ij(x):= 5x{6(j2_ i,j=1,23,..,n
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Minima/Maxima

Definition 5 (Critical Point) f:R" — R differentiable. IfV f (x) = 0 then we call x a critical point.

¢ f has alocal minimum at xj if there exists € > 0, such that Vx € B¢ (xo) : f(x) = f(x0)

¢ f has astrictlocal minimum at xy if there exists € > 0, such that Vx € B¢ (xp) : f(x) > f(x0)

T 1)
S{“rit‘_{' ]uc'

[oca.! minimum

¢ f has alocal maximum at xj if there exists € > 0, such that Vx € B.(xp) : f(x) < f(xp)

¢ f has a strict local maximum at xj if there exists € > 0, such that Vx € B¢ (xp) : f(x) < f(x0)

e If f is differentiable and xj is a critical point that is neither a local minima nor a local maximum.

We call it a saddle point.
s _ Saddle  mah
l poirt
¢ f has aglobal minimum at xg if Vx: f(x) = f(xo)
ﬂk
9\”1”“‘ i S
A— =

¢ f has aglobal maximum at xo if Vx: f(x) < f(xo)
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How can we identitywhich type of point we have?
Intuition in R:

N

, Yo

lﬂc:l' min. \‘?Cal max.
—Ft(i) =D £(2) =0 n
{"(x) >0 £ <o f ()=

Theorem6 f:R"—-R, fe €2(R™). Assume that xo is a critical point, i.eV f(xp) = 0. Then:

() If xo is a local minimum(maximum), then the Hessian H f (xo) is positive semi definite (negative semi
definite).

(@) If H f (xo) is positive definite (negative definite), then xy is a strict local minimum(maximum). If H f (xo)
is indefinite then (xy) is a saddle point.
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Matrix/Vector Calculus

Example: Linear Least Squares

[R*—>R
pred y(w) = Aw where, ‘5 . e
# is prediction, A - input data i /
w - weight vector (parameters we want to o
find). /
>
faw) =ly-ywls =y - Awl3 X,
f(w) - how good pred. is with parameter w.
We want to minimize f(w). Thus, we need to look
atVf:R" —R".
Compute Gradient:
w1
n n n
fl i [=X0- X ajrwe)? where ) ajrw, = (Aw);
j=1 k=1 k=1
Wn
6f n n n
3= Y 2(=aj)yj- Y. ajrwy) where ) ajrw, = (Aw)j,
i j=1 k=1 k=1
n
(vj- > ajrwp) =y—(Aw);, and
k=1
n n T
-2Y 2(-aj)(yj— Y ajrwr) = (A" (y— Aw));
j:i k=1

Viw) =-2AT(y- Aw)

Intuition: "syntax" close to 1-dim case:
fw) = (y — aw)?
fl(w)=-aly—aw)-2=-2a(y — aw)

Matrix-Vector Calculus: Lookup table ("matrix cookbook") for gradients of many important functions:

R =R

e fw=a"x (aeR™

f(x)={a,x)
%zaeﬂ%"

« f=xTAx = L =(a+ AT)xer”
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fiRPM R,

e fxy=a’Xb = % =ab’ e R
where X is R™™ aT is1 x nand b is m x 1 dimensions.

e fr=a’XTCXb = g—f;chXab+CXbaT
where alisaxm, XTismxn, Cisnxn, X nx m, and bis m x 1 dimensions.

c fX)=tr(X) = =1

where ¢7(X) is the trace and I is the identity matrix.

e f(X)=tr(AX) = %:A
f(X):tr(XTAX) f— %:(A+AT)X

* f(X)=det(X) — Determinant
% = der(X)(x")™!

gdel — det(X)(XN)ys

[ R™M — R [nverse.

c fLA =AY, fiji=(ATY

ofi; _ _
061;]” =—(aiy) 1(avj) !
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