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Higher Order Derivatives

Definition 1 (Higher - order derivatives) refer to the derivatives of derivatives, taking higher-order deriva-
tives involves repeatedly finding the derivative of a function. Example: the second derivative is the deriva-
tive of the first derivative, the third derivative is the derivative of the second derivative, and so on.

Consider f :Rn →R , assume it is differentiable, so all partial derivatives ∂ f
∂xi

:Rn →R exist. If this function

is differentiable, we can take its derivative: ∂
∂xi

( ∂ f
∂x j

) = ∂2 f
∂xi ∂x j

These are called second order partial deriva-

tives.

" In general, we cannot change the order of derivatives: ∂2 f
∂xi ∂x j

6= ∂2 f
∂x j ∂xi

Example:

f (x, y) = x.y3

x2 + y2

∇ f (x, y) = (
y3(y2 −x2)

(x2 + y2)2 ,
x y2(3x2 + y2)

(x2 + y2)2 )

Have:

∂ f

∂x
(0, y) = y ∀y ,

∂

∂y
(
∂ f

∂x
) = 1

∂ f

∂y
(x,0) = 0 ∀x,

∂

∂x
(
∂ f

∂y
) = 0

we can see that 1 6= 0.

Definition 2 (Continuously Differentiable:) We say that f : Rn → R is continuously differentiable if all
partial derivatives exist and are continuous.
We say that f is twice continuously differentiable if f is continuously differentiable and all its partial deriva-

tives ∂ f
∂xi

are again continuously differentiable.

Analogously: k times continuously differentiable
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Notation:
C k (Rn ,Rm) = { f :Rn →Rm |k times continuously differentiable}
C ∞(Rn ,Rm) = { f :Rn →Rm |∞ often continuously differentiable}

Theorem 3 (Schwartz) Assume that f is twice continuously differentiable. Then we can exchange the order

in which we take partial derivatives: ∂2 f
∂xi ∂x j

= ∂2 f
∂x j ∂x j

Analogously: k times continuously differentiable =⇒ can exchange order of first k partial derivatives.

" Caution about derivatives:

f :Rn →R ← function

∇ f :Rn →Rn ← first derivatives(
∂ f

∂xi
): n partial derivatives

H f :Rn →Rn×n ← second derivatives(
∂2 f

∂xi∂x j
): n2 partial derivatives

Definition 4 (Hessian Matrix) f :Rn →R, then we define the Hessian of f at point x by,

(H f )i j (x) := ∂2 f (x)
∂xi ∂x j

i , j = 1,2,3, ...,n
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Minima/Maxima

Definition 5 (Critical Point) f :Rn →R differentiable. If ∇ f (x) = 0 then we call x a critical point.

• f has a local minimum at x0 if there exists ε> 0, such that ∀x ∈ Bε(x0) : f (x) ≥ f (x0)

• f has a strict local minimum at x0 if there exists ε> 0, such that ∀x ∈ Bε(x0) : f (x) > f (x0)

• f has a local maximum at x0 if there exists ε> 0, such that ∀x ∈ Bε(x0) : f (x) ≤ f (x0)

• f has a strict local maximum at x0 if there exists ε> 0, such that ∀x ∈ Bε(x0) : f (x) < f (x0)

• If f is differentiable and x0 is a critical point that is neither a local minima nor a local maximum.
We call it a saddle point.

• f has a global minimum at x0 if ∀x : f (x) ≥ f (x0)

• f has a global maximum at x0 if ∀x : f (x) ≤ f (x0)
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How can we identitywhich type of point we have?
Intuition in R:

Theorem 6 f :Rn →R, f ∈C 2(Rn). Assume that x0 is a critical point, i.e ∇ f (x0) = 0. Then:

(i) If x0 is a local minimum(maximum), then the Hessian H f (x0) is positive semi definite (negative semi
definite).

(ii) If H f (x0) is positive definite (negative definite), then x0 is a strict local minimum(maximum). If H f (x0)
is indefinite then (x0) is a saddle point.
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Matrix/Vector Calculus

Example: Linear Least Squares

f :Rn →R

pred ŷ(w) = Aw where,
ŷ is prediction, A - input data
w - weight vector (parameters we want to
find).

f (w) = ‖y − ŷ(w)‖2
2 = ‖y − Aw‖2

2
f (w) - how good pred. is with parameter w .

We want to minimize f (w). Thus, we need to look
at ∇ f :Rn →Rn .

Compute Gradient:

f

w1
...

wn

=
n∑

j=1
(y j −

n∑
k=1

a j k wk )2 where
n∑

k=1
a j k wr = (Aw) j

∂ f

∂wi
=

n∑
j=1

2(−a j i )(y j −
n∑

k=1
a j k wk ) where

n∑
k=1

a j k wr = (Aw) j ,

(y j −
n∑

k=1
a j k wk ) = y − (Aw) j , and

−2
n∑

j=i
2(−a j i )(y j −

n∑
k=1

a j k wk ) = (AT (y − Aw))i

∇ f (w) =−2AT (y − Aw)

Intuition: "syntax" close to 1-dim case:
f (w) = (y −aw)2

f ′(w) =−a(y −aw) ·2 =−2a(y −aw)

Matrix-Vector Calculus: Lookup table ("matrix cookbook") for gradients of many important functions:

f :Rn →R.

• f (x) = aT x (a ∈Rn)
f (x) = 〈a, x〉
∂ f
∂x = a ∈Rn

• f (x) = xT Ax =⇒ ∂ f
∂x = (A+ AT )x ∈Rn
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f :Rn×m →R.

• f (x) = aT X b =⇒ ∂ f
∂x = abT ∈Rn×m

where X is Rn×m , aT is 1×n and b is m ×1 dimensions.

• f (x) = aT X T C X b =⇒ ∂ f
∂x =C T X ab +C X baT

where aT is a ×m, X T is m ×n, C is n ×n, X n ×m, and b is m ×1 dimensions.

• f (X ) = tr (X ) =⇒ ∂x
∂x = I

where tr (X ) is the trace and I is the identity matrix.

• f (X ) = tr (AX ) =⇒ ∂x
∂x = A

f (X ) = tr (X T AX ) =⇒ ∂x
∂x = (A+ AT )X

• f (X ) = det (X ) → Determinant

∂x
∂x = det (X )(X T )−1

∂det
∂xsr

= det (X )(X −1)r s

f :Rn×m →Rn×m Inverse.

• f (A) = A−1, fi j := (A−1)i j

∂ fi j

∂auv
=−(ai u)−1(av j )−1
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