Nov 06, 2023

Higher Order Derivatives, Minima/Maxima, Matrix/Vector Calculus Instructor: Vishnu Boddeti Scribe: Gaya Kanagaraj, Thad Greiner

Higher Order Derivatives

Definition 1 (Higher - order derivatives) refer to the derivatives of derivatives, taking higher-order derivatives involves repeatedly finding the derivative of a function. Example: the second derivative is the derivative of the first derivative, the third derivative is the derivative of the second derivative, and so on.

Consider $f : \mathbb{R}^n \to \mathbb{R}$, assume it is differentiable, so all partial derivatives $\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R}$ exist. If this function is differentiable, we can take its derivative: $\frac{\partial}{\partial x_i} (\frac{\partial f}{\partial x_j}) = \frac{\partial^2 f}{\partial x_i \partial x_j}$ These are called second order partial derivatives.

 \wedge In general, we cannot change the order of derivatives: $\frac{\partial^2 f}{\partial x_i \partial x_i} \neq \frac{\partial^2 f}{\partial x_i \partial x_i}$

Example:

$$f(x, y) = \frac{x \cdot y^3}{x^2 + y^2}$$

$$\nabla f(x, y) = \left(\frac{y^3(y^2 - x^2)}{(x^2 + y^2)^2}, \frac{x y^2(3x^2 + y^2)}{(x^2 + y^2)^2}\right)$$

Have:

$$\frac{\partial f}{\partial x}(0, y) = y \quad \forall y, \quad \frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) = 1$$
$$\frac{\partial f}{\partial y}(x, 0) = 0 \quad \forall x, \quad \frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = 0$$

we can see that $1 \neq 0$.

Definition 2 (Continuously Differentiable:) We say that $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable if all partial derivatives exist and are continuous. We say that f is twice continuously differentiable if f is continuously differentiable and all its partial derivatives $\frac{\partial f}{\partial x_i}$ are again continuously differentiable.

Analogously: k times continuously differentiable

 $\begin{array}{l} \underline{\text{Notation:}} \\ & \mathcal{C}^{k}(\mathbb{R}^{n},\mathbb{R}^{m}) = \{f:\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} | k \text{ times continuously differentiable} \} \\ & \mathcal{C}^{\infty}(\mathbb{R}^{n},\mathbb{R}^{m}) = \{f:\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} | \infty \text{ often continuously differentiable} \} \end{array}$

Theorem 3 (Schwartz) Assume that f is twice continuously differentiable. Then we can exchange the order in which we take partial derivatives: $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_j}$

Analogously: *k* times continuously differentiable \implies can exchange order of first *k* partial derivatives.

∧ Caution about derivatives:

$$f: \mathbb{R}^{n} \to \mathbb{R} \qquad \leftarrow \text{ function}$$

$$\nabla f: \mathbb{R}^{n} \to \mathbb{R}^{n} \qquad \leftarrow \text{ first derivatives}(\frac{\partial f}{\partial x_{i}}): n \text{ partial derivatives}$$

$$Hf: \mathbb{R}^{n} \to \mathbb{R}^{n \times n} \qquad \leftarrow \text{ second derivatives}(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}): n^{2} \text{ partial derivatives}$$

Definition 4 (Hessian Matrix) $f : \mathbb{R}^n \to \mathbb{R}$, then we define the Hessian of f at point x by, $(Hf)_{ij}(x) := \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$ i, j = 1, 2, 3, ..., n

Minima/Maxima

Definition 5 (Critical Point) $f : \mathbb{R}^n \to \mathbb{R}$ differentiable. If $\nabla f(x) = 0$ then we call x a critical point.

- *f* has a local minimum at x_0 if there exists $\varepsilon > 0$, such that $\forall x \in B_{\varepsilon}(x_0) : f(x) \ge f(x_0)$
- *f* has a strict local minimum at x_0 if there exists $\epsilon > 0$, such that $\forall x \in B_{\epsilon}(x_0) : f(x) > f(x_0)$

- *f* has a <u>local maximum</u> at x_0 if there exists $\varepsilon > 0$, such that $\forall x \in B_{\varepsilon}(x_0) : f(x) \le f(x_0)$
- *f* has a strict local maximum at x_0 if there exists $\epsilon > 0$, such that $\forall x \in B_{\epsilon}(x_0) : f(x) < f(x_0)$
- If f is differentiable and x_0 is a critical point that is neither a local minima nor a local maximum. We call it a saddle point.

• *f* has a global minimum at x_0 if $\forall x : f(x) \ge f(x_0)$

• *f* has a global maximum at x_0 if $\forall x : f(x) \le f(x_0)$

How can we identity which type of point we have? **Intuition in** \mathbb{R} :

Theorem 6 $f : \mathbb{R}^n \to \mathbb{R}, f \in \mathscr{C}^2(\mathbb{R}^n)$. Assume that x_0 is a critical point, i.e $\nabla f(x_0) = 0$. Then:

(i) If x_0 is a local minimum(maximum), then the Hessian $Hf(x_0)$ is positive semi definite (negative semi definite).

(ii) If $Hf(x_0)$ is positive definite (negative definite), then x_0 is a strict local minimum(maximum). If $Hf(x_0)$ is indefinite then (x_0) is a saddle point.

Matrix/Vector Calculus

Ŋ

Example: Linear Least Squares

 $f : \mathbb{R}^n \to \mathbb{R}$ pred $\hat{y}(w) = Aw$ where, \hat{y} is prediction, *A* - input data w - weight vector (parameters we want to find).

$$\begin{split} f(w) &= \|y - \hat{y}(w)\|_2^2 = \|y - Aw\|_2^2\\ f(w) &- \text{how good pred. is with parameter } w. \end{split}$$

We want to minimize f(w). Thus, we need to look at $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$.

Compute Gradient:

$$f\begin{pmatrix} w_1\\ \vdots\\ w_n \end{pmatrix} = \sum_{j=1}^n (y_j - \sum_{k=1}^n a_{jk} w_k)^2 \qquad \text{where } \sum_{k=1}^n a_{jk} w_r = (Aw)_j$$
$$\frac{\partial f}{\partial w_i} = \sum_{j=1}^n 2(-a_{ji})(y_j - \sum_{k=1}^n a_{jk} w_k) \qquad \text{where } \sum_{k=1}^n a_{jk} w_r = (Aw)_j,$$
$$(y_j - \sum_{k=1}^n a_{jk} w_k) = y - (Aw)_j, \quad \text{and}$$
$$-2\sum_{j=i}^n 2(-a_{ji})(y_j - \sum_{k=1}^n a_{jk} w_k) = (A^T(y - Aw))_i$$
$$\nabla f(w) = -2A^T(y - Aw)$$

Intuition: "syntax" close to 1-dim case: $f(w) = (y - aw)^2$ $f'(w) = -a(y - aw) \cdot 2 = -2a(y - aw)$

Matrix-Vector Calculus: Lookup table ("matrix cookbook") for gradients of many important functions:

 $f:\mathbb{R}^n\to\mathbb{R}.$

•
$$f(x) = a^T x$$
 $(a \in \mathbb{R}^n)$
 $f(x) = \langle a, x \rangle$
 $\frac{\partial f}{\partial x} = a \in \mathbb{R}^n$

•
$$f(x) = x^T A x \implies \frac{\partial f}{\partial x} = (A + A^T) x \in \mathbb{R}^n$$

- $f(x) = a^T X b \Longrightarrow \frac{\partial f}{\partial x} = ab^T \in \mathbb{R}^{n \times m}$ where *X* is $\mathbb{R}^{n \times m}$, a^T is $1 \times n$ and *b* is $m \times 1$ dimensions.
- $f(x) = a^T X^T C X b \implies \frac{\partial f}{\partial x} = C^T X a b + C X b a^T$ where a^T is $a \times m$, X^T is $m \times n$, C is $n \times n$, $X n \times m$, and b is $m \times 1$ dimensions.
- $f(X) = tr(X) \implies \frac{\partial x}{\partial x} = I$ where tr(X) is the trace and *I* is the identity matrix.
- $f(X) = tr(AX) \Longrightarrow \frac{\partial x}{\partial x} = A$ $f(X) = tr(X^T AX) \Longrightarrow \frac{\partial x}{\partial x} = (A + A^T)X$
- $f(X) = det(X) \rightarrow \text{Determinant}$

$$\tfrac{\partial x}{\partial x} = det(X)(X^T)^{-1}$$

$$\frac{\partial det}{\partial x_{sr}} = det(X)(X^{-1})_{rs}$$

 $f: \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$ Inverse.

• $f(A) = A^{-1}$, $f_{ij} := (A^{-1})_{ij}$

$$\frac{\partial f_{ij}}{\partial a_{uv}} = -(a_{iu})^{-1}(a_{vj})^{-1}$$