# Higher Order Derivatives, Minima/Maxima, Matrix/Vector Calculus 

Instructor: Vishnu Boddeti
Scribe: Gaya Kanagaraj, Thad Greiner

## Higher Order Derivatives

Definition 1 (Higher - order derivatives) refer to the derivatives of derivatives, taking higher-order derivatives involves repeatedly finding the derivative of a function. Example: the second derivative is the derivative of the first derivative, the third derivative is the derivative of the second derivative, and so on.

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, assume it is differentiable, so all partial derivatives $\frac{\partial f}{\partial x_{i}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ exist. If this function is differentiable, we can take its derivative: $\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ These are called second order partial derivatives.

4 In general, we cannot change the order of derivatives: $\quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \neq \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$

Example:

$$
\begin{aligned}
f(x, y) & =\frac{x \cdot y^{3}}{x^{2}+y^{2}} \\
\nabla f(x, y) & =\left(\frac{y^{3}\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \frac{x y^{2}\left(3 x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right)
\end{aligned}
$$

Have:

$$
\begin{array}{lll}
\frac{\partial f}{\partial x}(0, y)=y & \forall y, & \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=1 \\
\frac{\partial f}{\partial y}(x, 0)=0 & \forall x, & \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=0
\end{array}
$$

we can see that $1 \neq 0$.

Definition 2 (Continuously Differentiable:) We say that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable if all partial derivatives exist and are continuous.
We say that fis twice continuously differentiable iff is continuously differentiable and all its partial derivatives $\frac{\partial f}{\partial x_{i}}$ are again continuously differentiable.

Analogously: $k$ times continuously differentiable

Notation:
$\mathscr{C}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mid k\right.$ times continuously differentiable $\}$
$\mathscr{C}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mid \infty\right.$ often continuously differentiable $\}$

Theorem 3 (Schwartz) Assume that fis twice continuously differentiable. Then we can exchange the order in which we take partial derivatives: $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{j}}$

Analogously: $k$ times continuously differentiable $\Longrightarrow$ can exchange order of first $k$ partial derivatives.

Caution about derivatives:

$$
\begin{aligned}
f: \mathbb{R}^{n} \rightarrow \mathbb{R} & \leftarrow \text { function } \\
\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} & \leftarrow \text { first derivatives }\left(\frac{\partial f}{\partial x_{i}}\right): n \text { partial derivatives } \\
H f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n} & \leftarrow \text { second derivatives }\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right): n^{2} \text { partial derivatives }
\end{aligned}
$$

Definition 4 (Hessian Matrix) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then we define the Hessian of $f$ at point $x$ by, $(H f)_{i j}(x):=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} \quad i, j=1,2,3, \ldots, n$

## Minima/Maxima

Definition 5 (Critical Point) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable. If $\nabla f(x)=0$ then we call $x$ a critical point.

- $f$ has a local minimum at $x_{0}$ if there exists $\epsilon>0$, such that $\forall x \in B_{\epsilon}\left(x_{0}\right): f(x) \geq f\left(x_{0}\right)$
- $f$ has a strict local minimum at $x_{0}$ if there exists $\epsilon>0$, such that $\forall x \in B_{\epsilon}\left(x_{0}\right): f(x)>f\left(x_{0}\right)$

- $f$ has a local maximum at $x_{0}$ if there exists $\epsilon>0$, such that $\forall x \in B_{\epsilon}\left(x_{0}\right): f(x) \leq f\left(x_{0}\right)$
- $f$ has a strict local maximum at $x_{0}$ if there exists $\epsilon>0$, such that $\forall x \in B_{\epsilon}\left(x_{0}\right): f(x)<f\left(x_{0}\right)$
- If $f$ is differentiable and $x_{0}$ is a critical point that is neither a local minima nor a local maximum. We call it a saddle point.


- $f$ has a global minimum at $x_{0}$ if $\forall x: f(x) \geq f\left(x_{0}\right)$

- $f$ has a global maximum at $x_{0}$ if $\forall x: f(x) \leq f\left(x_{0}\right)$

How can we identitywhich type of point we have? Intuition in $\mathbb{R}$ :


Theorem $6 f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f \in \mathscr{C}^{2}\left(\mathbb{R}^{n}\right)$. Assume that $x_{0}$ is a critical point, ie $\nabla f\left(x_{0}\right)=0$. Then:
(i) If $x_{0}$ is a local minimum( maximum), then the Hessian $\operatorname{Hf}\left(x_{0}\right)$ is positive semi definite (negative semi definite).
(ii) If $H f\left(x_{0}\right)$ is positive definite (negative definite), then $x_{0}$ is a strict local minimum(maximum). If $H f\left(x_{0}\right)$ is indefinite then $\left(x_{0}\right)$ is a saddle point.

## Matrix/Vector Calculus

Example: Linear Least Squares
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
pred $\hat{y}(w)=A w$ where,
$\hat{y}$ is prediction, $A$ - input data
$w$ - weight vector (parameters we want to find).

$f(w)=\|y-\hat{y}(w)\|_{2}^{2}=\|y-A w\|_{2}^{2}$
$f(w)$ - how good pred. is with parameter $w$.
We want to minimize $f(w)$. Thus, we need to look at $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
$\underline{\text { Compute Gradient: }}$

$$
\begin{aligned}
f\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\sum_{j=1}^{n}\left(y_{j}-\sum_{k=1}^{n} a_{j k} w_{k}\right)^{2} & \text { where } \sum_{k=1}^{n} a_{j k} w_{r}=(A w)_{j} \\
\frac{\partial f}{\partial w_{i}}=\sum_{j=1}^{n} 2\left(-a_{j i}\right)\left(y_{j}-\sum_{k=1}^{n} a_{j k} w_{k}\right) & \text { where } \sum_{k=1}^{n} a_{j k} w_{r}=(A w)_{j}, \\
& \left(y_{j}-\sum_{k=1}^{n} a_{j k} w_{k}\right)=y-(A w)_{j}, \quad \text { and } \\
& -2 \sum_{j=i}^{n} 2\left(-a_{j i}\right)\left(y_{j}-\sum_{k=1}^{n} a_{j k} w_{k}\right)=\left(A^{T}(y-A w)\right)_{i}
\end{aligned}
$$

$$
\nabla f(w)=-2 A^{T}(y-A w)
$$

```
Intuition: "syntax" close to 1-dim case:
f(w)=(y-aw)}\mp@subsup{}{}{2
f}(w)=-a(y-aw)\cdot2=-2a(y-aw
```

Matrix-Vector Calculus: Lookup table ("matrix cookbook") for gradients of many important functions:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

- $f(x)=a^{T} x \quad\left(a \in \mathbb{R}^{n}\right)$

$$
f(x)=\langle a, x\rangle
$$

$$
\frac{\partial f}{\partial x}=a \in \mathbb{R}^{n}
$$

- $f(x)=x^{T} A x \Longrightarrow \frac{\partial f}{\partial x}=\left(A+A^{T}\right) x \in \mathbb{R}^{n}$
$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$.
- $f(x)=a^{T} X b \Longrightarrow \frac{\partial f}{\partial x}=a b^{T} \in \mathbb{R}^{n \times m}$ where $X$ is $\mathbb{R}^{n \times m}, a^{T}$ is $1 \times n$ and $b$ is $m \times 1$ dimensions.
- $f(x)=a^{T} X^{T} C X b \Longrightarrow \frac{\partial f}{\partial x}=C^{T} X a b+C X b a^{T}$
where $a^{T}$ is $a \times m, X^{T}$ is $m \times n, C$ is $n \times n, X n \times m$, and $b$ is $m \times 1$ dimensions.
- $f(X)=\operatorname{tr}(X) \Longrightarrow \frac{\partial x}{\partial x}=I$ where $\operatorname{tr}(X)$ is the trace and $I$ is the identity matrix.
- $f(X)=\operatorname{tr}(A X) \Longrightarrow \frac{\partial x}{\partial x}=A$

$$
f(X)=\operatorname{tr}\left(X^{T} A X\right) \Longrightarrow \frac{\partial x}{\partial x}=\left(A+A^{T}\right) X
$$

- $f(X)=\operatorname{det}(X) \rightarrow$ Determinant

$$
\begin{aligned}
& \frac{\partial x}{\partial x}=\operatorname{det}(X)\left(X^{T}\right)^{-1} \\
& \frac{\partial \operatorname{det}}{\partial x_{s r}}=\operatorname{det}(X)\left(X^{-1}\right)_{r s}
\end{aligned}
$$

$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m}$ Inverse.

- $f(A)=A^{-1}, \quad f_{i j}:=\left(A^{-1}\right)_{i j}$

$$
\frac{\partial f_{i j}}{\partial a_{u v}}=-\left(a_{i u}\right)^{-1}\left(a_{\nu j}\right)^{-1}
$$

