Higher Order Derivatives

Definition 1 (Higher - order derivatives) refer to the derivatives of derivatives, taking higher-order derivatives involves repeatedly finding the derivative of a function. Example: the second derivative is the derivative of the first derivative, the third derivative is the derivative of the second derivative, and so on.

Consider \(f : \mathbb{R}^n \to \mathbb{R} \), assume it is differentiable, so all partial derivatives \(\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \) exist. If this function is differentiable, we can take its derivative:

\[
\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial^2 f}{\partial x_i \partial x_j}
\]

These are called second order partial derivatives.

⚠️ In general, we cannot change the order of derivatives:

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} \neq \frac{\partial^2 f}{\partial x_j \partial x_i}
\]

Example:

\[
f(x, y) = \frac{x \cdot y^3}{x^2 + y^2}
\]

\[
\nabla f(x, y) = \left(\frac{y^3(y^2 - x^2) - xy^2(3x^2 + y^2)}{(x^2 + y^2)^2}, \frac{3x^2y^2 - x^4 + y^4}{(x^2 + y^2)^2} \right)
\]

Have:

\[
\frac{\partial f}{\partial x}(0, y) = y \quad \forall y, \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = 0
\]

\[
\frac{\partial f}{\partial y}(x, 0) = 0 \quad \forall x, \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = 0
\]

we can see that \(1 \neq 0 \).

Definition 2 (Continuously Differentiable.) We say that \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable if all partial derivatives exist and are continuous.

We say that \(f \) is twice continuously differentiable if \(f \) is continuously differentiable and all its partial derivatives \(\frac{\partial^2 f}{\partial x_i} \) are again continuously differentiable.

Analogously: \(k \) times continuously differentiable
Notation:
\[C^k(\mathbb{R}^n, \mathbb{R}^m) = \{ f : \mathbb{R}^n \to \mathbb{R}^m | k \text{ times continuously differentiable} \} \]
\[C^\infty(\mathbb{R}^n, \mathbb{R}^m) = \{ f : \mathbb{R}^n \to \mathbb{R}^m | \text{\infty often continuously differentiable} \} \]

Theorem 3 (Schwartz) Assume that \(f \) is twice continuously differentiable. Then we can exchange the order in which we take partial derivatives:
\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}
\]

Analogously: \(k \) times continuously differentiable \(\implies \) can exchange order of first \(k \) partial derivatives.

⚠️ Caution about derivatives:
- \(f : \mathbb{R}^n \to \mathbb{R} \) ← function
- \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \) ← first derivatives(\(\frac{\partial f}{\partial x_i} \)): \(n \) partial derivatives
- \(Hf : \mathbb{R}^n \to \mathbb{R}^{n \times n} \) ← second derivatives(\(\frac{\partial^2 f}{\partial x_i \partial x_j} \)): \(n^2 \) partial derivatives

Definition 4 (Hessian Matrix) \(f : \mathbb{R}^n \to \mathbb{R}, \) then we define the Hessian of \(f \) at point \(x \) by,
\[
(Hf)_{ij}(x) := \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \quad i, j = 1, 2, 3, ..., n
\]
Minima/Maxima

Definition 5 (Critical Point) \(f : \mathbb{R}^n \to \mathbb{R} \) differentiable. If \(\nabla f(x) = 0 \) then we call \(x \) a critical point.

- \(f \) has a local minimum at \(x_0 \) if there exists \(\epsilon > 0 \), such that \(\forall x \in B_\epsilon(x_0) : f(x) \geq f(x_0) \)
- \(f \) has a strict local minimum at \(x_0 \) if there exists \(\epsilon > 0 \), such that \(\forall x \in B_\epsilon(x_0) : f(x) > f(x_0) \)

- \(f \) has a local maximum at \(x_0 \) if there exists \(\epsilon > 0 \), such that \(\forall x \in B_\epsilon(x_0) : f(x) \leq f(x_0) \)
- \(f \) has a strict local maximum at \(x_0 \) if there exists \(\epsilon > 0 \), such that \(\forall x \in B_\epsilon(x_0) : f(x) < f(x_0) \)
- If \(f \) is differentiable and \(x_0 \) is a critical point that is neither a local minima nor a local maximum. We call it a saddle point.

- \(f \) has a global minimum at \(x_0 \) if \(\forall x : f(x) \geq f(x_0) \)

- \(f \) has a global maximum at \(x_0 \) if \(\forall x : f(x) \leq f(x_0) \)
How can we identity which type of point we have?

Intuition in \(\mathbb{R} \):

![Graphs showing local minima, local maxima, and saddle points](image)

Theorem 6 \(f : \mathbb{R}^n \to \mathbb{R}, \ f \in C^2(\mathbb{R}^n) \). Assume that \(x_0 \) is a critical point, i.e \(\nabla f(x_0) = 0 \). Then:

(i) If \(x_0 \) is a local minimum (maximum), then the Hessian \(H_f(x_0) \) is positive semi definite (negative semi definite).

(ii) If \(H_f(x_0) \) is positive definite (negative definite), then \(x_0 \) is a strict local minimum (maximum). If \(H_f(x_0) \) is indefinite then \((x_0) \) is a saddle point.
Matrix/Vector Calculus

Example: Linear Least Squares

\[f : \mathbb{R}^n \to \mathbb{R} \]
\[\text{pred } \hat{y}(w) = Aw \text{ where,} \]
\[\hat{y} \text{ is prediction, } A \text{ - input data}\]
\[w \text{ - weight vector (parameters we want to find).} \]

\[f(w) = \| y - \hat{y}(w) \|_2^2 = \| y - Aw \|_2^2 \]
\[f(w) \text{ - how good pred. is with parameter } w. \]

We want to minimize \(f(w) \). Thus, we need to look at \(\nabla f : \mathbb{R}^n \to \mathbb{R}^n \).

Compute Gradient:

\[
\begin{align*}
\frac{\partial f}{\partial w_i} &= \sum_{j=1}^{n} 2(-a_{ji})(y_j - \sum_{k=1}^{n} a_{jk}w_k) \\
&= \sum_{j=1}^{n} 2(-a_{ji})(y_j - \sum_{k=1}^{n} a_{jk}w_k) \\
&\quad \text{where } \sum_{k=1}^{n} a_{jk}w_k = (Aw)_j, \\
&\quad \text{and} \\
&\quad (y_j - \sum_{k=1}^{n} a_{jk}w_k) = y - (Aw)_j, \
&\quad -2 \sum_{j=1}^{n} 2(-a_{ji})(y_j - \sum_{k=1}^{n} a_{jk}w_k) = (A^T(y - Aw))_i \\
\n\n\n\end{align*}
\]

\[\nabla f(w) = -2A^T(y - Aw) \]

Intuition: "syntax" close to 1-dim case:
\[f(w) = (y - aw)^2 \]
\[f'(w) = -a(y - aw) \cdot 2 = -2a(y - aw) \]

Matrix-Vector Calculus: Lookup table ("matrix cookbook") for gradients of many important functions:

\[f : \mathbb{R}^n \to \mathbb{R}. \]

- \(f(x) = a^T x \quad (a \in \mathbb{R}^n) \)
 \[f(x) = \langle a, x \rangle \]
 \[\frac{\partial f}{\partial x} = a \in \mathbb{R}^n \]
- \(f(x) = x^T Ax \implies \frac{\partial f}{\partial x} = (A + A^T)x \in \mathbb{R}^n \)
\[f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}. \]

- \(f(x) = a^T X b \implies \frac{\partial f}{\partial x} = ab^T \in \mathbb{R}^{n \times m} \)
 where \(X \) is \(\mathbb{R}^{n \times m} \), \(a^T \) is \(1 \times n \) and \(b \) is \(m \times 1 \) dimensions.

- \(f(x) = a^T X^T C X b \implies \frac{\partial f}{\partial x} = C^T X a b + C X b a^T \)
 where \(a^T \) is \(a \times m \), \(X^T \) is \(m \times n \), \(C \) is \(n \times n \), \(X \) \(n \times m \), and \(b \) is \(m \times 1 \) dimensions.

- \(f(X) = \text{tr}(X) \implies \frac{\partial f}{\partial X} = I \)
 where \(\text{tr}(X) \) is the trace and \(I \) is the identity matrix.

- \(f(X) = \text{tr}(AX) \implies \frac{\partial f}{\partial X} = A \)

 \(f(X) = \text{tr}(X^T A X) \implies \frac{\partial f}{\partial X} = (A + A^T) X \)

- \(f(X) = \det(X) \rightarrow \text{Determinant} \)

 \[\frac{\partial \det}{\partial X} = \det(X)(X^{-1}) \]

 \[\frac{\partial \det}{\partial x_{sr}} = \det(X)(X^{-1})_{rs} \]

\[f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m} \text{ Inverse}. \]

- \(f(A) = A^{-1}, \ f_{ij} := (A^{-1})_{ij} \)

 \[\frac{\partial f_{ij}}{\partial a_{uv}} = -(a_{iu})^{-1}(a_{uj})^{-1} \]