CSE 840: Computational Foundations of Artificial Intelligence November 08, 2023 Definition of a probability measure, discrete, density; Radon-Nikodym Instructor: Vishnu Boddeti Scribe: Xinnan Dai, Jay Revolinsky, Shenglai Zeng

## 1 Probability Measure

#### Definition 1

- Given space  $\Omega$  ("abstract space")
- Need a r-algebra  $A_R$  on Omega. ("measurable events")
  - $A \in A_r \implies A^C \in A_r$
  - $(A_i)_{i \in \mathbb{N}} \subset A_r \implies \bigcup_{i=1}^{\infty} A_i \in A_r$  ("countable unions")
  - $\emptyset, \Omega \in A_r$
  - countable intersections
- A measure  $\mu$  on  $(\Omega, A_r)$  is a function  $\mu : A_r \to [0, \infty]$  that is countably additive: If  $(A_i)_{i \in \mathbb{N}}$  is a sequence of pairwise disjoint sets, then  $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

A measure P on a measurable space  $(\Omega, A_r)$  is called a *probability measure* if  $P(\Omega) = 1$ . The elements of  $A_r$  are called events. Then  $(\Omega, A_r, P)$  is called a *probability space*.

#### Example (1):

Throw a die

 $\Omega = 1, 2, ..., 6, A_r = P(\Omega)$  (r-algebra generated by the "elementary events" {1}, {2}...{6}).

P can be defined uniquely by assigning  $P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) = \frac{1}{6}$ 

For example  $P(\{1,5\}) = P(\{1\}) + P(\{5\}) = \frac{1}{3}$ 

Throw two dice:

 $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ...6\} = \{\underbrace{(1, 1)}_{first \ die, second \ die}, (1, 2) ....\} \text{ all of which are elementary events}$ 

$$A_r = P(\Omega)$$

 $P(\{(i,j)\}) = \frac{1}{36}$ 

Example (2): Normal distribution

 $\Omega = \mathbb{R}$ 

 $A_r = \text{Borel-r-algebra}$ 

 $f_{\mu,r}:\mathbb{R}\implies\mathbb{R}$ 



Figure 1:  $\mu$ 



Figure 2: A

 $\begin{aligned} x &\mapsto \frac{1}{\sqrt{2\pi r^2}} \exp\left(\frac{-(x-\mu)^2}{2r^2}\right) \\ P &: A_r \to [0,1], P(A) := \int_A f_{\mu,r}(x) dx \end{aligned}$ 



Figure 3: Dirac measure

# 2 Different Types of Probability Measures

Definition 1 Discrete measure:

 $\Omega = \{x_1, x_2, ...\}$  finite and countable

$$A_r = P(\Omega)$$

We define a probability measure  $P: A_r \to [0,1]$  by assigning probabilities to the "elementary events":

$$P(\{x_i\}) =: P_i$$

with  $0 \leq P_i \leq 1, \Sigma_i P_i = 1$ 

For  $A \in A_r$  we assign

$$P(A) = \sum_{\{i|x_i \in A\}} P_i.$$

Examples: a coin toss, distribution on Q

**Definition 2** <u>Dirac measure</u>:

For  $x \in \mathbb{R}$ , we define the <u>Dirac measure</u>  $\delta_x$  on  $(\mathbb{R}, B(\mathbb{R}))$  by setting  $\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & otherwise \end{cases}$  sometimes this is called a point mass at a point x. A discrete measure on  $\mathbb{R}$  can be written as a sum of Dirac measures. For example, throwing a die can be considered as

$$\frac{1}{6}(\delta_1 + \delta_2 + \dots + \delta_6)$$

Measures with a density

Consider  $(\mathbb{R}^n, B(\mathbb{R}^n))$  and the Lebesque measure  $\lambda$ . Consider a function  $f : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$  that is measurable and satisifies  $\int f d\lambda = 1 \implies \int f(x) dx = 1$ .

Then we define a measure  $\gamma$  on  $\mathbb{R}^n$  by setting, for all  $A \in A_r$ ,

$$\gamma(A) := \int_A f(x) dx$$

 $\gamma$  is the probability measure on  $(\mathbb{R}^n, B(\mathbb{R}^n))$  with density f.



Figure 4:  $\mu(A) = 0 \implies \int_A f d\mu \equiv \gamma(A) = 0$ 



Figure 5:  $\gamma_A = \int_A f d\lambda$ 

Notation:  $\gamma = f * \lambda$ 

Question: Can we describe every probability measure on  $(\mathbb{R}^n, B(\mathbb{R}^n))$  in terms of density?

Answer: no!

Counterexample:  $\delta_0$  Dirac measure.

On the same measure space  $(\mathbb{R}^n, B(\mathbb{R}^n))$ , if we have two measures  $\lambda, \gamma$ .

Question:  $\gamma(A) = \int_A \varnothing d\lambda$ 

Does  $\emptyset$  exist?

Answer: No!

**Definition 1.** A probability measure on  $\gamma$  on  $(\mathbb{R}^n, B(\mathbb{R}^n))$  is called <u>absolutely continuous</u> with respect to another measure  $\mu$  on  $(\mathbb{R}^n, B(\mathbb{R}^n))$  if every  $\mu$ -null set is also a  $\gamma$ -null set

 $\forall B \in B(\mathbb{R}^n) : \mu(B) = 0 \implies \gamma(B) = 0.$ 

Notation:  $\gamma \ll \mu$ 

$$\mu(A) = 0 \implies \int_A f d\mu \equiv \gamma(A) = 0$$

**Example**:  $N(0,1) \ll \lambda$ 

$$\gamma_A = \int_A f d\lambda \ 5$$

**Example**:  $\delta_0 \ll \lambda$  because

$$\lambda(0) = 0 \text{ but } \delta_0(0) = 1$$

**Theorem 2.** (Radon-Nikodym): Consider two probability measures  $\gamma, \mu$  on  $(\mathbb{R}^n.B(\mathbb{R}^n))$ . Then the following two statements are equivalent:

If  $\gamma \ll \mu$ , then  $\exists \phi$  such that  $\delta(A) = \int_A \varnothing d\mu$ ,  $\varnothing$  exists and is unique.

### Proof idea:

 $(1) \implies (2)$  easy

(2)  $\implies$  (1) We need to construct a density!

Consider the set G of all functions g with the following properties:

- $$\label{eq:generalized_states} \begin{split} & \circledast \ \begin{cases} \bullet \ g \ \text{is measurable}, \ g \geq 0 \\ \bullet \ g \ast \mu \leq \gamma, \ \text{that is} \ \forall A \in B(\mathbb{R}^n : \int_A g d\mu \leq \gamma(A). \end{split}$$
- Observe: g = 0 satisfies  $\circledast$ , so G is not empty.
- If g,h both satisfy  $\mathfrak{B}$ , then sup(g,h) satisfies  $\mathfrak{B}$ .
- Define :=  $\sup_{g \in G} \int gd\xi$  and construct a sequence  $(g_n)_{n \in \mathbb{N}}$  such that  $\lim \int g_n d\mu = \xi$ .
- Define "density"  $f := supg_n$ .
- Now prove: f is the density that we are looking for.  $\Box$