CSE 840: Computational Foundations of Artificial Intelligence Nov. 13, 2023	
Lebesgue decomposition, CDF, Random variables	
Instructor: Vishnu Boddeti	Scribe: Jingzhe Liu, Hongzhi Wen, Yufeng Li

1 Lebegue Decomposition

Definition 1 Consider a measure space $(X, \mathcal{A}, \lambda)$ and anthor measure $\mu: \mathcal{B}(\mathbb{R}) \rightarrow[0, \infty]$.
(a) μ is called absolutely continuous if $\lambda(A)=0 \Rightarrow \mu(A)=0$ for all $A \in \mathcal{B}((R)$.
(b) μ is called singular with respect to λ if there is $N \in \mathcal{B}(\mathbb{R})$ with $\lambda(N)=0$ and $\mu\left(N^{c}\right)=0$

Theorem 2 Consider μ, γ prob. measures on (Ω, \mathcal{A}). Then there exists a unique decomposition $\gamma=\gamma_{a c}+\gamma_{s}$ such that $\gamma_{a c} \ll \mu$ and $\gamma_{s} \perp \mu$.

Example: $\gamma=\frac{1}{2}\left(N(0,1), \delta_{0}\right) . \gamma=\gamma_{a c}+\gamma_{s}$, where $\gamma_{a c}=\frac{1}{2} N(0,1), \gamma_{s}=\frac{1}{2} \delta_{0}$.
Cantor distribution: non-trivial distribution that is singular with respect to λ. Construct the Cantor set:

- Start with $C_{0}:=[0,1]$
- Start with $C_{1}:=\left[0, \frac{1}{3}\right] \bigcup\left[\frac{2}{3}, 1\right]$

The Cantor set is limited in this process. Now construct a prob. distribution:
Consider the CDFs of the sets $C_{0}, C_{1}, C_{2} \cdots$

$$
\begin{aligned}
& \text { uniform on } \\
& {[0,1 / 3] \cup[2 / 31]}
\end{aligned}
$$

2 Cumulative Distribution Function

Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Define the function $F: \mathbb{R} \rightarrow \mathbb{R}, x \rightarrow P((-\infty, x])$. W says that F is a cumulative distribution function(cdf), that satisfies the following properties:
(i) F is monotonically increasing, $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$
(ii) F is continuous from the right: $\left(x_{n}\right)_{n \in \mathbb{N}}$ sequence with $x_{n} \leq x_{n+1}$ and $x_{n} \rightarrow x$ then also $F\left(x_{n}\right) \rightarrow F(x)$

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a function with properties (i) and (ii). Then there exists a unique probability measure P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $P((-\infty, x]):=F(x)$

3 Random Varibale

Definition $3 \operatorname{Let}(\Omega, \mathcal{A}, P)$ be a probability space, $(\widetilde{\Omega}, \widetilde{\mathcal{A}})$ be another measuable space. A mapping $X: \Omega \rightarrow \widetilde{\Omega}$ is called a random varibale if X is measurable, i.e., $\forall \widetilde{A} \in \widetilde{\mathcal{A}}: X^{-1}(\widetilde{A}):=\{w \in \Omega \mid X(w) \in$ $\widetilde{A}\} \in \mathcal{A}$.

Definition 4 A random variable $X: \Omega \rightarrow \widetilde{\Omega}$ induces a measure on the target space: For $\widetilde{A} \in \widetilde{\mathcal{A}}$ we define $P_{X}(\widetilde{\mathcal{A}}):=P\left(X^{-1}(\widetilde{A})\right)$. This is a probability measure on $(\widetilde{\Omega}, \widetilde{\mathcal{A}})$, and it is called the distribution of X.

Definition $5 X:(\Omega, \mathcal{A}, P) \rightarrow(\widetilde{\Omega}, \widetilde{\mathcal{A}})$. Then the family $\sigma(X):=\left\{X^{-1}(\widetilde{A}) \mid \widetilde{A} \in \widetilde{\mathcal{A}}\right\}$ is a σ-algebra induced by X. (It is the smallest σ-algebra on Ω that makes X measurable)

4 Conditional Probability

Notation: $P(A \bigcap B)=P($ "A and B " $) ; P(A \bigcup B)=P($ "A or B " $)$

Definition 6 Let (Ω, \mathcal{A}, P) be a probability space. $A, B \in \mathcal{A}, P(B)>0$. Then $P(A \mid B):=\frac{P(A \cap B)}{P(B)}$ is called the conditional probability of A given B.

Theorem 7 The mapping $P_{B}: \mathcal{A} \rightarrow[0,1], A \rightarrow P(A \mid B)$ is a probability measure on (Ω, \mathcal{A}), it is called the conditional distribution of P with respect to B.

Examples:

1. two dice: $P($ "sum is q " \mid "first die was 3 ")
2. $\Omega=$ all persons on earth, $\mathcal{A}=P(\Omega), P=$ "uniform".

