CSE 840: Computational Foundations of Artificial Intelligence Nov. 13, 2023 Lebesgue decomposition, CDF, Random variables Instructor: Vishnu Boddeti Scribe: Jingzhe Liu, Hongzhi Wen, Yufeng Li

1 Lebegue Decomposition

Definition 1 Consider a measure space $(X, \mathcal{A}, \lambda)$ and anthor measure $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$. (a) μ is called absolutely continuous if $\lambda(A) = 0 \Rightarrow \mu(A) = 0$ for all $A \in \mathcal{B}((R)$. (b) μ is called singular with respect to λ if there is $N \in \mathcal{B}(\mathbb{R})$ with $\lambda(N) = 0$ and $\mu(N^c) = 0$

Theorem 2 Consider μ , γ prob. measures on (Ω, \mathcal{A}) . Then there exists a unique decomposition $\gamma = \gamma_{ac} + \gamma_s$ such that $\gamma_{ac} \ll \mu$ and $\gamma_s \perp \mu$.

Example: $\gamma = \frac{1}{2}(N(0,1), \delta_0)$. $\gamma = \gamma_{ac} + \gamma_s$, where $\gamma_{ac} = \frac{1}{2}N(0,1)$, $\gamma_s = \frac{1}{2}\delta_0$. Cantor distribution: non-trivial distribution that is singular with respect to λ . Construct the Cantor set: Start with $C_s := \begin{bmatrix} 0 & 1 \end{bmatrix}$

• Start with $C_0 := [0, 1]$ • Start with $C_1 := [0, \frac{1}{3}] \bigcup [\frac{2}{3}, 1]$...

The Cantor set is limited in this process. Now construct a prob. distribution: Consider the CDFs of the sets $C_0, C_1, C_2 \cdots$

2 Cumulative Distribution Function

Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Define the function $F : \mathbb{R} \to \mathbb{R}, x \to P((-\infty, x])$. W says that F is a cumulative distribution function(cdf), that satisfies the following properties: (i) F is monotonically increasing, $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$

(ii) F is continuous from the right: $(x_n)_{n\in\mathbb{N}}$ sequence with $x_n \leq x_{n+1}$ and $x_n \to x$ then also $F(x_n) \to F(x)$

Let $F : \mathbb{R} \to \mathbb{R}$ be a function with properties (i) and (ii). Then there exists a unique probability measure P on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $P((-\infty, x]) := F(x)$

3 Random Varibale

Definition 3 Let (Ω, \mathcal{A}, P) be a probability space, $(\widetilde{\Omega}, \widetilde{\mathcal{A}})$ be another measuable space. A mapping $X : \Omega \to \widetilde{\Omega}$ is called a random varibale if X is measurable, i.e., $\forall \widetilde{A} \in \widetilde{\mathcal{A}} : X^{-1}(\widetilde{A}) := \{w \in \Omega | X(w) \in \widetilde{A}\} \in \mathcal{A}.$

Definition 4 A random variable $X : \Omega \to \widetilde{\Omega}$ induces a measure on the target space: For $\widetilde{A} \in \widetilde{\mathcal{A}}$ we define $P_X(\widetilde{\mathcal{A}}) := P(X^{-1}(\widetilde{\mathcal{A}}))$. This is a probability measure on $(\widetilde{\Omega}, \widetilde{\mathcal{A}})$, and it is called the distribution of X.

Definition 5 $X : (\Omega, \mathcal{A}, P) \to (\widetilde{\Omega}, \widetilde{\mathcal{A}})$. Then the family $\sigma(X) := \{X^{-1}(\widetilde{\mathcal{A}}) | \widetilde{\mathcal{A}} \in \widetilde{\mathcal{A}}\}$ is a σ -algebra induced by X. (It is the smallest σ -algebra on Ω that makes X measurable)

4 Conditional Probability

Notation: $P(A \cap B) = P("A \text{ and } B"); P(A \cup B) = P("A \text{ or } B")$

Definition 6 Let (Ω, \mathcal{A}, P) be a probability space. $A, B \in \mathcal{A}, P(B) > 0$. Then $P(A|B) := \frac{P(A \cap B)}{P(B)}$ is called the conditional probability of A given B.

Theorem 7 The mapping $P_B : \mathcal{A} \to [0,1], A \to P(A|B)$ is a probability measure on (Ω, \mathcal{A}) , it is called the conditional distribution of P with respect to B.

Examples:

0

- 1. two dice: P("sum is q"|"first die was 3")
- 2. Ω = all persons on earth, $\mathcal{A} = P(\Omega)$, P ="uniform".