CSE 840: Computational Foundations of Artificial Intelligence November 15, 2023
 Bayes Theorem to correlation (discrete case)
 Instructor: Vishnu Boddeti Scribe: Avi Lochab, Keerthi Gogineni, Varuntej Kodandapuram

1 Bayes Theorem

1.1 Law of total probability:

Let $B_{1}, B_{2} \ldots, B_{k}$ be a disjoint partition of Ω with $B_{i} \in \mathcal{A}$ for all i, and $A \in \mathcal{A}$. Then
$P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)=\sum_{i=1}^{k} P\left(A \bigcap B_{i}\right)$

1.2 Bayes Formula:

$P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}{\sum_{i} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}=\frac{P\left(A \bigcap B_{i}\right)}{P(A)}$
Eg: prob(poor reviews|accept), P (accept|poor reviews)

1.3 Example:

COVID Testing

- Assume that 1% of all humans have COVID.
- 90% of people with COVID test positive: "True Positive"
- 8% of people without COVID test positive: "False Positive"
- Given that a person tested positive, What is the likelihood that they have COVID?

$P(C O V I D \mid+$ vetest $)=\frac{P(+ \text { ve test } \mid \operatorname{COVID}) \cdot P(\operatorname{COVID})}{P(+ \text { ve } \mid \operatorname{COVID}) \cdot P(\operatorname{COVID})+P(-v e \mid \operatorname{COVID}) \cdot P(\text { not COVID })}$
 $=\frac{0.9 \times 0.001}{0.9 \times 0.01+0.08 \times 0.99}$
 $\approx 10 \%$

2 Independence

2.1 Def:

Consider a probability space (Ω, \mathcal{A}, P).Two events A, B are called independent if

$$
P(A \bigcap B)=P(A) \cdot P(B)
$$

Observation: A is independent of $\mathrm{B} \leftrightarrow P(A \mid B)=P(A)$

A family of events $\left(A_{i}\right)_{i \in I}$ is called independent if for all finite subsets $\mathrm{J} \subseteq I$ we have

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\pi_{i \in J} P\left(A_{i}\right)
$$

(Family is called pairwise independent if $\forall i, j \in I: P\left(A_{i} \bigcap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right)$. This does not imply that the family of events is independent)

2.2 Def:

Two random variables $X: \Omega \rightarrow \Omega_{1}, Y: \Omega \rightarrow \Omega_{2}$ are called independent if their induced σ - algebras $\sigma(X), \sigma(Y)$ are independent: $\forall A \in \sigma(X), B \in \sigma(Y): P(A \bigcap B)=P(A) \cdot P(B)$.

Notation for independence

- (events) $A \Perp B$
- (RV) $X \Perp Y$

```
A\perpB
X\perpY
Don't do this
This is orthogonal
```

Key concept:

- Prob: Central Limit Theorem (CLT), sum of independent RVs.
- Fairness: $\hat{Y} \Perp S$ enforce while learning.
- Learning theory: Assumption that samples are independent w.r.t. each other.

3 Expectation (discrete case)

Consider a discrete random variable $X: \Omega \rightarrow \mathbb{R}$ (that is, the image $X(\Omega)$ is at most countable).

3.1 Def:

Let (Ω, \mathcal{A}, P) be a probability space, $S \subset \mathbb{R}$ at most countable, $X: \Omega \rightarrow S$ random variable. If $\sum_{r \in S}|r| \cdot P(X=r)<\infty$, then

$$
E(X):=\sum_{r \in S} r \cdot P(X=r)
$$

is called the expectation of X.
(Sometimes written as $E[X], \mathbb{E} X$ or $\mathbb{E}(X)$)

Examples:

- Toss a coin. Let $\Omega=\{$ head, tail $\}, A=P(\Omega)$

$$
\begin{gathered}
P(\text { head })=p, \quad P(\text { tail })=1-p . \quad 0<p<1 \\
\qquad \begin{array}{c}
X: \Omega \rightarrow\{0,1\}, \quad \text { head } \mapsto 0, \quad \text { tail } \mapsto 1 . \\
E(X)=0 \cdot P(X=0)+1 \cdot P(X=1) \\
=p \cdot 0+(1-p) \cdot 1 \\
\quad=1-p
\end{array}
\end{gathered}
$$

- Test error of a classifier.

$$
\hat{Y}=f(x) \text { where } x \text { is input, } f(\cdot) \text { classifier }
$$

Y is the output.

$$
\begin{gathered}
e=(\hat{Y}-Y)^{2}=(f(x)-Y)^{2} \\
\min _{f} E_{x}(e)
\end{gathered}
$$

3.2 Def:

A random variable is called "centered" if $E(X)=0$.

Important properties:

- Linear: $E(a \cdot X+b \cdot Y)=a \cdot E(X)+b \cdot E(Y)$ where $a, b \in \mathbb{R}$ and X, Y are random variables. $a, b \Rightarrow \mathbb{R}$
$X, Y \Rightarrow R V$
- If X, Y are independent $\Rightarrow E(X \cdot Y)=E(X) \cdot E(Y)$.

4 Variance and Standard Deviation

$\mathrm{X}, \mathrm{Y}:(\Omega, A, P)->\mathbb{R}$ discrete random variables with $E\left(x^{2}\right)<\infty, E\left(y^{2}\right)<\infty$ Then, $\operatorname{Var}(x):=E\left((x-E(x))^{2}\right)$

moderate variance high variance.
$\sqrt{\operatorname{Var}(x)}=: \sigma_{x}$ is called Standard Deviation

Covariance

$\operatorname{Cov}(\mathrm{X}, \mathrm{Y}):=\mathrm{E}((\mathrm{X}-\mathrm{E}(\mathrm{X}) *(\mathrm{Y}-\mathrm{E}(\mathrm{Y}))$

Correlation coefficient $=$

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}} \in[-1,1]
$$

If $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$, then X and Y are uncorrelated.

Additionally, for $\mathrm{k} \in \mathbb{N}$ we define the terms $\mathrm{E}\left(X^{k}\right)$ ("k-th moment")
$\mathrm{E}\left((\mathrm{X}-\mathrm{E}(\mathrm{X}))^{k}\right)($ "k-th centered moment")

Intuition about covariance
$\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(((\mathrm{X}-\mathrm{E}(\mathrm{X}) *(\mathrm{Y}-\mathrm{E}(\mathrm{Y})))$

Negative large covariance

uncorrelated

Independence implies uncorrelated BUT uncorrelated does not imply independence

Independence

Properties:

$\operatorname{Var}(x)=E\left(x^{2}\right)-(E(x))^{2}$
$\operatorname{Cov}(X, Y)=E(X * Y)-E(X) * E(Y)$ and if $(X \perp Y, E(X) * E(Y)=E(X * Y))$
$E(a X+b)=a * E(X)+b$
$\operatorname{Var}(a X+b)=a^{2} * \operatorname{Var}(X)$
$\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
$\operatorname{Var}(X, Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Cov}(X, Y)$
If X, Y are independent, $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$ and $\operatorname{Var}(\mathrm{X}, \mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$

