CSE 840: Computational Foundations of Artificial Intelligence November 15, 2023 Bayes Theorem to correlation (discrete case) Instructor: Vishnu Boddeti Scribe: Avi Lochab, Keerthi Gogineni, Varuntej Kodandapuram

1 Bayes Theorem

1.1 Law of total probability:

Let $B_1, B_2, ..., B_k$ be a disjoint partition of Ω with $B_i \in \mathcal{A}$ for all i, and $A \in \mathcal{A}$. Then

 $P(A) = \sum_{i=1}^{k} P(A|B_i) \cdot P(B_i) = \sum_{i=1}^{k} P(A \cap B_i)$

1.2 Bayes Formula:

$$\begin{split} P(B_i|A) &= \frac{P(A|B_i) \cdot P(B_i)}{\sum_i P(A|B_i) \cdot P(B_i)} = \frac{P(A \bigcap B_i)}{P(A)} \\ \text{Eg: prob(poor reviews|accept), P(accept|poor reviews)} \end{split}$$

1.3 Example:

COVID Testing

- Assume that 1% of all humans have COVID.
- 90% of people with COVID test positive: "True Positive"
- 8% of people without COVID test positive: "False Positive"
- Given that a person tested positive, What is the likelihood that they have COVID?

 $P(COVID| + vetest) = \frac{P(+ve\ test|COVID).P(COVID)}{P(+ve|COVID).P(COVID)+P(-ve|COVID).P(not\ COVID)}$

 $= \frac{0.9 \times 0.001}{0.9 \times 0.01 + 0.08 \times 0.99} \\\approx 10\%$

2 Independence

2.1 Def:

Consider a probability space (Ω, \mathcal{A}, P) . Two events A, B are called independent if

$$P(A \cap B) = P(A) \cdot P(B)$$

Observation: A is independent of $B \leftrightarrow P(A|B) = P(A)$

A family of events $(A_i)_{i \in I}$ is called independent if for all finite subsets $J \subseteq I$ we have

$$P(\bigcap_{i\in J} A_i) = \pi_{i\in J} P(A_i)$$

(Family is called pairwise independent if $\forall i, j \in I$: $P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$. This does not imply that the family of events is independent)

2.2 Def:

Two random variables $X : \Omega \to \Omega_1, Y : \Omega \to \Omega_2$ are called independent if their induced σ - algebras $\sigma(X), \sigma(Y)$ are independent: $\forall A \in \sigma(X), B \in \sigma(Y) : P(A \cap B) = P(A) \cdot P(B)$.

Notation for independence

- (events) $A \perp \!\!\!\perp B$
- (RV) $X \perp \!\!\!\perp Y$

 $\begin{array}{l} A \perp B \\ X \perp Y \\ Don't \ do \ this \\ This \ is \ orthogonal \end{array}$

Key concept:

• Prob: Central Limit Theorem (CLT), sum of independent RVs.

- Fairness: $\hat{Y} \perp \!\!\!\perp S$ enforce while learning.
- Learning theory: Assumption that samples are independent w.r.t. each other.

3 Expectation (discrete case)

Consider a discrete random variable $X : \Omega \to \mathbb{R}$ (that is, the image $X(\Omega)$ is at most countable).

3.1 Def:

Let (Ω, \mathcal{A}, P) be a probability space, $S \subset \mathbb{R}$ at most countable, $X : \Omega \to S$ random variable. If $\sum_{r \in S} |r| \cdot P(X = r) < \infty$, then

$$E(X) := \sum_{r \in S} r \cdot P(X = r)$$

is called the expectation of X.

(Sometimes written as E[X], $\mathbb{E}X$ or $\mathbb{E}(X)$)

Examples:

• Toss a coin. Let $\Omega = \{\text{head}, \text{tail}\}, A = P(\Omega)$

$$P(\text{head}) = p, \quad P(\text{tail}) = 1 - p, \quad 0
$$X : \Omega \to \{0, 1\}, \quad \text{head} \mapsto 0, \quad \text{tail} \mapsto 1.$$
$$E(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1)$$
$$= p \cdot 0 + (1 - p) \cdot 1$$
$$= 1 - p$$$$

• Test error of a classifier.

 $\hat{Y} = f(x)$ where x is input, $f(\cdot)$ classifier

Y is the output.

$$e = (\hat{Y} - Y)^2 = (f(x) - Y)^2$$
$$\min_f E_x(e)$$

3.2 Def:

A random variable is called "centered" if E(X) = 0.

Important properties:

- Linear: $E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$ where $a, b \in \mathbb{R}$ and X, Y are random variables. $a, b \Rightarrow \mathbb{R}$ $X, Y \Rightarrow RV$
- If X, Y are independent $\Rightarrow E(X \cdot Y) = E(X) \cdot E(Y)$.

4 Variance and Standard Deviation

X, Y: $(\Omega, A, P) \rightarrow \mathbb{R}$ discrete random variables with $E(x^2) < \infty$, $E(y^2) < \infty$ Then, $Var(x) := E((x - E(x))^2)$

 $\sqrt{Var(x)} =: \sigma_x$ is called Standard Deviation

Covariance

 $\operatorname{Cov}(X,\,Y):=\operatorname{E}((X\,\operatorname{\hbox{-}E}(X)\,\ast\,(Y\,\operatorname{\hbox{-}E}(Y))$

Correlation coefficient =

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} \in [-1, 1]$$

If Cov(X, Y) = 0, then X and Y are uncorrelated.

Additionally, for $\mathbf{k} \in \mathbb{N}$ we define the terms $\mathbf{E}(X^k)$ ("k-th moment")

 $E((X - E(X))^k)$ ("k-th centered moment")

Intuition about covariance

Cov(X,Y) = E(((X - E(X) * (Y - E(Y)))

uncorrelated

Independence implies uncorrelated BUT uncorrelated does not imply independence

 $\begin{array}{l} \textbf{Properties:}\\ Var(x) = E(x^2) - (E(x))^2\\ Cov(X,Y) = E(X*Y) - E(X)*E(Y) \text{ and if } (X \perp Y, E(X)*E(Y) = E(X*Y))\\ E(aX+b) = a*E(X) + b\\ Var(aX+b) = a^2*Var(X)\\ Cov(X,Y) = Cov(Y,X)\\ Var(X,Y) = Var(X) + Var(Y) + Cov(X,Y)\\ \text{If X, Y are independent, } Cov(X,Y) = 0 \text{ and } Var(X,Y) = Var(X) + Var(Y) \end{array}$