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1 Linear Mapping

Definition 1 Let U, V be vector spaces over the same field F. A mapping T : U → V is called a
linear map if ∀u1,u2 ∈ U, λ ∈ F.

t(u1 + u2) = t(u1) + t(u2)

t(λu1) = λt(u1)

The set of all linear mappings from U → V is denoted L(U, V ).
If U = V , then we denote L(U).

Definition 2 T ∈ L(U, V ). Then kernel of T (null-space of T ) is defined as

ker(T ) := null(T ) := {u ∈ U |Tu = 0}

Proposition 3

• ker(T ) is a subspace of U

• T injective iff ker(T ) = {0}

Definition 4 The range of T (image of T ) is defined as,

range(T ) := image(T ) := {Tu|u ∈ U}

Proposition 5

• The range is always a subspace of V

• T is a subjective iff range(T ) = V

Definition 6 Let V ′ be any subset of V , i.e. V ′ ⊂ V . The pre-image of V ′ is defined as

T−1(V ′) = {u ∈ U |Tu ∈ V ′}

Proposition 7 If V ′ ⊂ V is a subspace of V , then T−1(V ′) is a subspace of V
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Theorem 8 Let V be finite-dim, W is any vector space, T ∈ L(V,W ). Let (u1, . . . ,un) be a basis
of ker(T ) ⊂ V . Let (w1, . . . ,wm) be a basis of range(T ) ⊂ W . Then u1, . . ., un, T−1(w1), . . .,
T−1(wm) ⊂ V form a basis of V . In particular, dim(V ) = dim(ker(T )) + dim(range(T )).

Proof: Denote T−1(w1) = z1, . . . , T
−1(wm) = zm

Step 1: V ⊂ span{u1, . . . ,un, z1, . . . , zm}

Let v ∈ V consider Tv ∈ range(T ).

=⇒ ∃λ1, . . . , λm ∈ F, s.t.
Tv = λ1w1 + λ2w2 + . . .+ λmwm

= λ1T (z1) + λ1T (z2) . . .+ λ1T (z3)

= T (λ1z1 + λ1z2 . . .+ λ1z3)

=⇒ Tv − T (λ1z1 + λ1z2 . . .+ λ1z3) = 0

=⇒ T (v − (λ1z1 + λ1z2 . . .+ λ1z3)︸ ︷︷ ︸
∈ker(T )

) = 0

Reminder: u1, . . . ,un are basis of ker(T )
=⇒ ∃µ1, . . . , µn ∈ F, s.t.

v − (λ1z1 + λ1z2 . . .+ λ1z3) = µ1u1 + µ2u2 + . . .+ µnun

=⇒ v = λ1z1 + λ1z2 . . .+ λ1z3 + µ1u1 + µ2u2 + . . .+ µnun

Step 2: u1 . . .un, z1 . . . zm are linearly independent.

Assume that
µ1u1 + . . .+ µnun + λ1z1 + . . .+ λmzm = 0 (1)

Now consider:

λ1w1 + . . .+ λmwm

=λ1T (z1) + · · ·+ λmT (zm)

=λ1T (z1) + · · ·+ λmT (zm) + µ1T (u1) + . . .+ µnT (un)︸ ︷︷ ︸
0

=T (λ1z1 + λ1z2 . . .+ λ1z3 + µ1u1 + µ2u2 + . . .+ µnun︸ ︷︷ ︸
=0 by (1)

)

=0

=⇒ λ1w1 + . . .+ λmwm = 0.

=⇒ λ1 = λ2 = . . . = λm = 0, since w1, . . . ,wm are basis.

=⇒ µ1u1 + . . .+ µnun = 0

=⇒ µ1 = µ2 = . . . = µn = 0, since u1, . . . ,um are basis. □
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Proposition 9 T ∈ L(V, V ), V is finite-dim. Then the following statements are equivalent.

1. T is injective.

2. T is surjective.

3. T is bijective.

Proof: Direct consequence of theorem. □

Does not hold in ∞-dim spaces.

Additional material 10 T is said to be injective or a monomorphism if any of the following equiv-
alent conditions are true:

• T is one-to-one as a map of sets.

• kerT = 0V

• dim(kerT ) = 0

• T is left-invertible, which is to say there exists a linear map S : W → V such that ST is the
identity map on V .

For further readings, please refer to Wikipedia:
https: // en. wikipedia. org/ wiki/ Linear_ map .

2 Matrices and Linear Mapping

Notation:

A =

a11 · · · a1n
...

. . .
...

am1 . . . amn

 = (aij)i=1,...,m,j=1,...,n

Proposition 11 Consider T ∈ L(v, w), v, w finite-dim. Let v1 . . .vn be a basis of V , w1 . . .wm be
a basis of w.

• v = λ1v1 . . .+ λnvn

T (v) = T (λ1v1 . . .+ λnvn)
= λ1T (v1) . . .+ λnT (vn)

• Each image vector T (vj) can be expressed in basis w1 . . .wm. There exists co-efficient a1j . . . amj,
s.t.

T (vj) = a1jw1 + . . .+ amjwm.

• We can stack these coefficients in a matrix that

a11 · · · a1j · · · a1n
...

...
...

am1 · · · amj · · · amn
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Notation: Let T : V → W be linear, let B a basis of V , C basis of W , We denote by M(T,B, C)
the matrix corresponding to T w.r.t. bases B and C.

Proposition 12 Convenient properties of matrices: Let V,W be vector spaces, and consider the
bases fixed. Let S, T ∈ L(V,W ).

• M(S + T ) = M(S) +M(T )

• M(λS) = λM(S)

• For v = λ1v1 + . . .+ λnvn we have that T (V ) = M(T0)

λ1

...
λn

 where (v1 . . .vn) is basis of V

• T : U → V, S : V → W linear, then M(S ◦ T ) = M(S) ·M(T )

Additional material 13 Matrix Row Operation

Matrix row operations are operations that can be applied to the rows of a matrix to transform it.
There are three primary types of matrix row operations:

1. Scalar Multiplication: Multiply a row by a nonzero scalar.

2. Row Addition: Add a multiple of one row to another row.

3. Row Interchange: Swap the positions of two rows.

Example

Consider the following matrix:

A =

2 1 3
0 4 −1
5 2 0


We will perform the following row operations on matrix A:

1. Multiply the first row by 2.

2. Subtract 5 times the first row from the third row.

3. Swap the second and third rows.

After applying these operations, we obtain the transformed matrix B:

B =

4 2 6
5 2 0
0 14 −31
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Matrix row operations are commonly used in Gaussian elimination and matrix row reduction to solve
linear systems and manipulate matrices in various applications.

For further readings, please refer to Wikipedia:
https: // en. wikipedia. org/ wiki/ Matrix_ ( mathematics)

3 Invertible maps and Matrices

Definition 14 T ∈ L(V,W ) is called invertible if there exists a linear map S ∈ L(W,V ) such that

S ◦ T = IdV and T ◦ S = IdW .

The map S is called the inverse of T , denoted by T−1.

Remark 15 Inverse maps exist and are unique.

Proposition 16 A linear map is invertible iff it is injective an subjective i.e. bijective.

Proof: “⇒”:

invertible =⇒ injective:

Suppose T (u) = T (v). Then u = T−1(T (u)) = T−1(T (v)) = v =⇒ u = v =⇒ injective.

injective =⇒ invertible:

w ∈ W . Then w = T (T−1(w)) =⇒ w ∈ range of T =⇒ subjective.

“⇐”:

injective & subjective =⇒ invertible:

Let w ∈ W . There exists unique v ∈ V . s.t. T (u) = w

Define the mapping: S(w) = v. Clearly have T ◦ S = Id.

Let v ∈ V , Then T ((S ◦ T )v) = (T ◦ S)(Tv) = Id ◦ Tv = Tv

=⇒ (S ◦ T )v = v =⇒ S ◦ T = Id =⇒ S is inverse of T

Linear mapping:

Let w1,w2 ∈ W,α ∈ F : S(w1 +w2) = S(w1) + S(w2), S(αw1) = αS(w1)

Let v1,v2 ∈ V. s.t. T (vi) = wi. Then S(wi) = vi

S(w1 +w2) = S(T (v1) + T (v2)) S(αw1) = S(αT (v1))

= S(T (v1 + v2)) = S(T (αv1))

= v1 + v2 = αv1

= S(w1) + S(w2) = αS(w1)
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=⇒ S is a linear transform. □

Additional material 17 Matrix Inversion with Gaussian Elimination

Consider a 2× 2 matrix A:

A =

[
2 1
1 3

]
To find its inverse, A−1, we can use Gaussian elimination. Here are the steps:

1. Form the augmented matrix [A | I]: [
2 1 | 1 0
1 3 | 0 1

]
2. Apply row operations to transform the left side into the identity matrix:[

1 1
2 | 1

2 0
0 5

2 | − 1
2 1

]
3. Divide the first row by 1 and the second row by 5

2 :[
1 1

2 | 1
2 0

0 1 | − 1
5

2
5

]
4. Subtract 1

2 times the second row from the first row:[
1 0 | 3

5 − 1
5

0 1 | − 1
5

2
5

]
After performing these row operations, the left side of the augmented matrix is the identity matrix
and the right side is the inverse of matrix A:

A−1 =

[
3
5 − 1

5
− 1

5
2
5

]
So, the inverse of matrix A is the matrix displayed above.

For further readings, please refer to Wikipedia:
https: // en. wikipedia. org/ wiki/ Invertible_ matrix

4 Inverse Matrix

Definition 18 A square matrix A ∈ Fn×n is invertible if there exists a square matrix B ∈ Fn×n

such that: A ·B = B ·A = Id =

1 · · · 0
...

. . .
...

0 · · · 1


The matrix B is called the inverse matrix and is denoted by A−1.
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Proposition 19 The inverse matrix represents the inverse of the corresponding linear map, that is
T : V → V

M(T−1) = (M(T ))−1

In particular, a matrix is invertible iff the corresponding map is invertible.

Remark 20

• The inverse matrix does not always exist.

• (A−1)−1 = A,(A ·B)−1 = B−1 ·A−1

• AT invertible ⇔ A invertible
(AT )−1 = (A−1)T

• A ∈ Fn×n invertible ⇔ rank(A) = n

• The set of all invertible matrices is called a general linear group:
GL(n, F )= {A ∈ Fn×n |A invertible}
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