CSE 840: Computational Foundations of Artificial Intelligence	Aug 30, 2023	
	Linear Mapping	
Instructor: Vishnu Boddeti	Scribe: Yawen Wang, Yimeng Liu, Jiancheng Liu	

1 Linear Mapping

Definition 1 Let U, V be vector spaces over the same field \mathbb{F}. A mapping $T: U \rightarrow V$ is called a linear map if $\forall \mathbf{u}_{1}, \mathbf{u}_{2} \in U, \lambda \in \mathbb{F}$.

$$
\begin{aligned}
t\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right) & =t\left(\mathbf{u}_{1}\right)+t\left(\mathbf{u}_{2}\right) \\
t\left(\lambda \mathbf{u}_{1}\right) & =\lambda t\left(\mathbf{u}_{1}\right)
\end{aligned}
$$

The set of all linear mappings from $U \rightarrow V$ is denoted $\mathcal{L}(U, V)$. If $U=V$, then we denote $\mathcal{L}(U)$.

Definition $2 T \in \mathcal{L}(U, V)$. Then kernel of T (null-space of T) is defined as

$$
\operatorname{ker}(T):=\operatorname{null}(T):=\{\mathbf{u} \in U \mid T \mathbf{u}=\mathbf{0}\}
$$

Proposition 3

- $\operatorname{ker}(T)$ is a subspace of U
- T injective iff $\operatorname{ker}(T)=\{\mathbf{0}\}$

Definition 4 The range of T (image of T) is defined as,

$$
\operatorname{range}(T):=\operatorname{image}(T):=\{T \mathbf{u} \mid \mathbf{u} \in U\}
$$

Proposition 5

- The range is always a subspace of V
- T is a subjective iff range $(T)=V$

Definition 6 Let V^{\prime} be any subset of V, i.e. $V^{\prime} \subset V$. The pre-image of V^{\prime} is defined as

$$
T^{-1}\left(V^{\prime}\right)=\left\{\mathbf{u} \in U \mid T \mathbf{u} \in V^{\prime}\right\}
$$

Proposition 7 If $V^{\prime} \subset V$ is a subspace of V, then $T^{-1}\left(V^{\prime}\right)$ is a subspace of V

Theorem 8 Let V be finite-dim, W is any vector space, $T \in \mathcal{L}(V, W)$. Let $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$ be a basis of $\operatorname{ker}(T) \subset V . \operatorname{Let}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right)$ be a basis of $\operatorname{range}(T) \subset W$. Then $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}, T^{-1}\left(\mathbf{w}_{1}\right), \ldots$, $T^{-1}\left(\mathbf{w}_{m}\right) \subset V$ form a basis of V. In particular, $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{range}(T))$.

Proof: Denote $T^{-1}\left(\mathbf{w}_{1}\right)=\mathbf{z}_{1}, \ldots, T^{-1}\left(\mathbf{w}_{m}\right)=\mathbf{z}_{m}$
Step 1: $V \subset \operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right\}$
Let $\mathbf{v} \in V$ consider $T \mathbf{v} \in \operatorname{range}(T)$.

$$
\begin{aligned}
\Longrightarrow & \exists \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{F}, \text { s.t. } \\
& T \mathbf{v}=\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\ldots+\lambda_{m} \mathbf{w}_{m} \\
& =\lambda_{1} T\left(\mathbf{z}_{1}\right)+\lambda_{1} T\left(\mathbf{z}_{2}\right) \ldots+\lambda_{1} T\left(\mathbf{z}_{3}\right) \\
& =T\left(\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}\right) \\
\Longrightarrow & T \mathbf{v}-T\left(\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}\right)=0 \\
\Longrightarrow & T(\underbrace{\mathbf{v}-\left(\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}\right)}_{\in \operatorname{ker}(T)})=0
\end{aligned}
$$

Reminder: $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are basis of $\operatorname{ker}(T)$
$\Longrightarrow \exists \mu_{1}, \ldots, \mu_{n} \in \mathbb{F}$, s.t.

$$
\mathbf{v}-\left(\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}\right)=\mu_{1} \mathbf{u}_{1}+\mu_{2} \mathbf{u}_{2}+\ldots+\mu_{n} \mathbf{u}_{n}
$$

$$
\Longrightarrow \mathbf{v}=\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}+\mu_{1} \mathbf{u}_{1}+\mu_{2} \mathbf{u}_{2}+\ldots+\mu_{n} \mathbf{u}_{n}
$$

Step 2: $\mathbf{u}_{1} \ldots \mathbf{u}_{n}, \mathbf{z}_{1} \ldots \mathbf{z}_{m}$ are linearly independent.
Assume that

$$
\begin{equation*}
\mu_{1} \mathbf{u}_{1}+\ldots+\mu_{n} \mathbf{u}_{n}+\lambda_{1} \mathbf{z}_{1}+\ldots+\lambda_{m} \mathbf{z}_{m}=\mathbf{0} \tag{1}
\end{equation*}
$$

Now consider:

$$
\begin{aligned}
& \lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{m} \mathbf{w}_{m} \\
= & \lambda_{1} T\left(\mathbf{z}_{1}\right)+\cdots+\lambda_{m} T\left(\mathbf{z}_{m}\right) \\
= & \lambda_{1} T\left(\mathbf{z}_{1}\right)+\cdots+\lambda_{m} T\left(\mathbf{z}_{m}\right)+\underbrace{\mu_{1} T\left(\mathbf{u}_{1}\right)+\ldots+\mu_{n} T\left(\mathbf{u}_{n}\right)}_{0} \\
= & T(\underbrace{\lambda_{1} \mathbf{z}_{1}+\lambda_{1} \mathbf{z}_{2} \ldots+\lambda_{1} \mathbf{z}_{3}+\mu_{1} \mathbf{u}_{1}+\mu_{2} \mathbf{u}_{2}+\ldots+\mu_{n} \mathbf{u}_{n}}_{=0}) \\
= & \mathbf{0}
\end{aligned}
$$

$\Longrightarrow \lambda_{1} \mathbf{w}_{1}+\ldots+\lambda_{m} \mathbf{w}_{m}=0$.
$\Longrightarrow \lambda_{1}=\lambda_{2}=\ldots=\lambda_{m}=0$, since $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ are basis.
$\Longrightarrow \mu_{1} \mathbf{u}_{1}+\ldots+\mu_{n} \mathbf{u}_{n}=0$
$\Longrightarrow \mu_{1}=\mu_{2}=\ldots=\mu_{n}=0$, since $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are basis.

Proposition $9 T \in \mathcal{L}(V, V), V$ is finite-dim. Then the following statements are equivalent.

1. T is injective.
2. T is surjective.
3. T is bijective.

Proof: Direct consequence of theorem.
Does not hold in ∞-dim spaces.

Additional material $10 T$ is said to be injective or a monomorphism if any of the following equivalent conditions are true:

- T is one-to-one as a map of sets.
- $\operatorname{ker} T=0_{V}$
- $\operatorname{dim}(k e r T)=0$
- T is left-invertible, which is to say there exists a linear map $S: W \rightarrow V$ such that $S T$ is the identity map on V.

For further readings, please refer to Wikipedia:
https: //en.wikipedia.org/wiki/Linear_map.

2 Matrices and Linear Mapping

Notation:

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)_{i=1, \ldots, m, j=1, \ldots, n}
$$

Proposition 11 Consider $T \in \mathcal{L}(v, w), v, w$ finite-dim. Let $\mathbf{v}_{1} \ldots \mathbf{v}_{n}$ be a basis of $V, \mathbf{w}_{1} \ldots \mathbf{w}_{m}$ be a basis of w.

- $\mathbf{v}=\lambda_{1} \mathbf{v}_{1} \ldots+\lambda_{n} \mathbf{v}_{n}$
$T(\mathbf{v})=T\left(\lambda_{1} \mathbf{v}_{1} \ldots+\lambda_{n} \mathbf{v}_{n}\right)$
$=\lambda_{1} T\left(\mathbf{v}_{1}\right) \ldots+\lambda_{n} T\left(\mathbf{v}_{n}\right)$
- Each image vector $T\left(\mathbf{v}_{j}\right)$ can be expressed in basis $\mathbf{w}_{1} \ldots \mathbf{w}_{m}$. There exists co-efficient $a_{1 j} \ldots a_{m j}$, s.t.

$$
T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m}
$$

- We can stack these coefficients in a matrix that $\left(\begin{array}{ccccc}a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\ \vdots & & \vdots & & \vdots \\ a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}\end{array}\right)$

Notation: Let $T: V \rightarrow W$ be linear, let \mathcal{B} a basis of V, \mathcal{C} basis of W, we denote by $M(T, \mathcal{B}, \mathcal{C})$ the matrix corresponding to T w.r.t. bases \mathcal{B} and \mathcal{C}.

Proposition 12 Convenient properties of matrices: Let V, W be vector spaces, and consider the bases fixed. Let $S, \overline{T \in \mathcal{L}(V, W) \text {. }}$

- $M(S+T)=M(S)+M(T)$
- $M(\lambda S)=\lambda M(S)$
- For $\mathbf{v}=\lambda_{1} \mathbf{v}_{1}+\ldots+\lambda_{n} \mathbf{v}_{n}$ we have that $T(V)=M(T 0)\left(\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{n}\end{array}\right)$ where $\left(\mathbf{v}_{1} \ldots \mathbf{v}_{n}\right)$ is basis of V
- $T: U \rightarrow V, S: V \rightarrow W$ linear, then $M(S \circ T)=M(S) \cdot M(T)$

Additional material 13 Matrix Row Operation

Matrix row operations are operations that can be applied to the rows of a matrix to transform it. There are three primary types of matrix row operations:

1. Scalar Multiplication: Multiply a row by a nonzero scalar.
2. Row Addition: Add a multiple of one row to another row.
3. Row Interchange: Swap the positions of two rows.

Example

Consider the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & 4 & -1 \\
5 & 2 & 0
\end{array}\right]
$$

We will perform the following row operations on matrix A :

1. Multiply the first row by 2 .
2. Subtract 5 times the first row from the third row.
3. Swap the second and third rows.

After applying these operations, we obtain the transformed matrix B :

$$
B=\left[\begin{array}{ccc}
4 & 2 & 6 \\
5 & 2 & 0 \\
0 & 14 & -31
\end{array}\right]
$$

Matrix row operations are commonly used in Gaussian elimination and matrix row reduction to solve linear systems and manipulate matrices in various applications.

For further readings, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Matrix_(mathematics)

3 Invertible maps and Matrices

Definition $14 T \in \mathcal{L}(V, W)$ is called invertible if there exists a linear map $S \in \mathcal{L}(W, V)$ such that

$$
S \circ T=I d_{V} \text { and } T \circ S=I d_{W}
$$

The map S is called the inverse of T, denoted by T^{-1}.

Remark 15 Inverse maps exist and are unique.

Proposition 16 A linear map is invertible iff it is injective an subjective i.e. bijective.
Proof: " \Rightarrow ":
invertible \Longrightarrow injective:
Suppose $T(\mathbf{u})=T(\mathbf{v})$. Then $\mathbf{u}=T^{-1}(T(\mathbf{u}))=T^{-1}(T(\mathbf{v}))=\mathbf{v} \Longrightarrow \mathbf{u}=\mathbf{v} \Longrightarrow$ injective.
injective \Longrightarrow invertible:
$\mathbf{w} \in W$. Then $\mathbf{w}=T\left(T^{-1}(\mathbf{w})\right) \Longrightarrow w \in$ range of $T \Longrightarrow$ subjective.
$" \Leftarrow "$:
injective \& subjective \Longrightarrow invertible:
Let $\mathbf{w} \in W$. There exists unique $\mathbf{v} \in V$. s.t. $T(\mathbf{u})=\mathbf{w}$
Define the mapping: $S(\mathbf{w})=\mathbf{v}$. Clearly have $T \circ S=I d$.
Let $\mathbf{v} \in V$, Then $T((S \circ T) \mathbf{v})=(T \circ S)(T \mathbf{v})=I d \circ T \mathbf{v}=T \mathbf{v}$
$\Longrightarrow(S \circ T) \mathbf{v}=\mathbf{v} \Longrightarrow S \circ T=I d \Longrightarrow S$ is inverse of T
Linear mapping:
Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in W, \alpha \in \mathbb{F}: S\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=S\left(\mathbf{w}_{1}\right)+S\left(\mathbf{w}_{2}\right), S\left(\alpha \mathbf{w}_{1}\right)=\alpha S\left(\mathbf{w}_{1}\right)$
Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. s.t. $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$. Then $S\left(\mathbf{w}_{i}\right)=\mathbf{v}_{i}$

$$
\begin{aligned}
S\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right) & =S\left(T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)\right) & S\left(\alpha \mathbf{w}_{1}\right) & =S\left(\alpha T\left(\mathbf{v}_{1}\right)\right) \\
& =S\left(T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right) & & =S\left(T\left(\alpha \mathbf{v}_{1}\right)\right) \\
& =\mathbf{v}_{1}+\mathbf{v}_{2} & & =\alpha \mathbf{v}_{1} \\
& =S\left(\mathbf{w}_{1}\right)+S\left(\mathbf{w}_{2}\right) & & =\alpha S\left(\mathbf{w}_{1}\right)
\end{aligned}
$$

$\Longrightarrow S$ is a linear transform.

Additional material 17 Matrix Inversion with Gaussian Elimination

Consider a 2×2 matrix A :

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

To find its inverse, A^{-1}, we can use Gaussian elimination. Here are the steps:

1. Form the augmented matrix $[A \mid I]$:

$$
\left[\begin{array}{ll|ll}
2 & 1 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right]
$$

2. Apply row operations to transform the left side into the identity matrix:

$$
\left[\begin{array}{cc|cc}
1 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{5}{2} & -\frac{1}{2} & 1
\end{array}\right]
$$

3. Divide the first row by 1 and the second row by $\frac{5}{2}$:

$$
\left[\begin{array}{cc|cc}
1 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 1 & -\frac{1}{5} & \frac{2}{5}
\end{array}\right]
$$

4. Subtract $\frac{1}{2}$ times the second row from the first row:

$$
\left[\begin{array}{cc|cc}
1 & 0 & \frac{3}{5} & -\frac{1}{5} \\
0 & 1 & -\frac{1}{5} & \frac{2}{5}
\end{array}\right]
$$

After performing these row operations, the left side of the augmented matrix is the identity matrix and the right side is the inverse of matrix A :

$$
A^{-1}=\left[\begin{array}{cc}
\frac{3}{5} & -\frac{1}{5} \\
-\frac{1}{5} & \frac{2}{5}
\end{array}\right]
$$

So, the inverse of matrix A is the matrix displayed above.
For further readings, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Invertible_matrix

4 Inverse Matrix

Definition $18 A$ square matrix $A \in \mathbb{F}^{n \times n}$ is invertible if there exists a square matrix $B \in \mathbb{F}^{n \times n}$ such that: $A \cdot B=B \cdot A=I d=\left(\begin{array}{ccc}1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1\end{array}\right)$
The matrix B is called the inverse matrix and is denoted by A^{-1}.

Proposition 19 The inverse matrix represents the inverse of the corresponding linear map, that is $T: V \rightarrow V$

$$
M\left(T^{-1}\right)=(M(T))^{-1}
$$

In particular, a matrix is invertible iff the corresponding map is invertible.

Remark 20

- The inverse matrix does not always exist.
- $\left(A^{-1}\right)^{-1}=A,(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$
- A^{T} invertible $\Leftrightarrow A$ invertible $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $A \in \mathbb{F}^{n \times n}$ invertible $\Leftrightarrow \operatorname{rank}(A)=n$
- The set of all invertible matrices is called a general linear group: $G L(n, F)=\left\{A \in \mathbb{F}^{n \times n} / A\right.$ invertible $\}$

