CSE 840: Computational Foundations of Artificial Intelligence Nov. 22, 2023 Convergence of Random Variables and Borel Cantelli
Instructor: Vishnu Boddeti
Scribe: Max Resch, Shafkat Kabir

1 Convergence of Random Variables

Coin, $P(\{H\})$ estimate?
Toss the coin, record if I see a head.
$\hat{P}_{n}(\{H\})=\frac{\text { num.ofheads }}{n}$, where $\hat{P}_{n}(H)$ is a random variable.
$\hat{P}_{n}(\{H\}) \xrightarrow{?} P(H)$
Consider $X_{i}: \Omega \rightarrow \mathbb{R}, i \in \mathbb{N}, x: \Omega \rightarrow \mathbb{R}$
where (Ω, A, P) is a probability space.

1.1 Levels of Strength of Convergence

(0) Point-wise convergence or "Sure Convergence"
$X_{n}(w) \rightarrow X(w), \forall w \in \Omega$
(1) $\left(x_{i}\right)_{i \in \mathbb{N}}$ converges to X almost surely (a.s): \Longleftrightarrow
$P\left(\left\{w \in \Omega \mid \lim _{i \rightarrow \infty} x_{i}(w)=x(w)\right\}\right)=1$
Notation: $x_{i} \rightarrow x$ a.s.

Note: This is used in the proof of Strong Law of Large Numbers
(2) $\left(x_{i}\right)_{i \in \mathbb{N}}$ converges to X in probability:
$\Longleftrightarrow \forall \epsilon>0$
$P\left(\left\{w \in \Omega\left|\left|x_{i}(w)-x(w)\right|>\epsilon\right\}\right) \rightarrow 0\right.$
Note: This is used in the proof of Weak Law of Large Numbers and convergence of empirical estimators.

Let us check that these definitions make sense. We need to prove that the events in (1) and (2) are measurable and are in A.
case $(1): \lim x_{i}(w)=x(w) \Longleftrightarrow$
$\forall k \in \mathbb{N} \exists N \in \mathbb{N} \forall n>N:\left|x_{n}(w)-x(w)\right|<\frac{1}{k}$

So we get: $\left\{w \mid x_{i}(w) \rightarrow x(w)\right\}$
$=\bigcap_{k \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq \mathbb{N}}\left\{w| | x_{i}(w)-x(w) \left\lvert\,<\frac{1}{k}\right.\right\}$
where $\bigcap_{k \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq \mathbb{N}}$ are the countable unions and intersections
$\Rightarrow x_{i}(w), x(w)$ are measurable, $\left|x_{i}(w)-x(w)\right|$ is measurable so $\{\ldots\} \in A$
(3) $x_{n} \rightarrow$ in L^{p} ("in the p-th mean"):
$\Longleftrightarrow x_{n}, x \in L^{p}$ and $\left\|x_{i}-x\right\|_{p} \rightarrow 0$
(4) Let $M^{\prime}\left(\mathbb{R}^{n}\right)$ be the set of all probability measures on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$.

Assume $\left(\mu_{n}\right)_{n} \subset M^{\prime}\left(\mathbb{R}^{n}\right), \mu \in M^{\prime}\left(\mathbb{R}^{n}\right)$.
$C_{b}\left(\mathbb{R}^{n}\right):=$ space of bounded continuous functions.
$\mu_{n} \rightarrow \mu$ weakly: $\Longleftrightarrow \forall f \in C_{b}\left(\mathbb{R}^{n}\right): \int f d \mu_{n} \rightarrow \int f d \mu$

(5) $x_{i}, x:(\Omega, A, P) \rightarrow \mathbb{R}^{n}$. The sequence x_{n} converges in distribution to $\mathrm{x}: \Longleftrightarrow$ the distribution $P_{x_{n}}$ converges to P_{x} weakly.

Note: This is used in the proof of the Central Limit Theorem. This is the weakest form of convergence.

We have the following implications:
Remark 1. All the other relations now shown in general not true.
Example. Converge a.s., in probability, but not in L^{\prime}.
$X_{n}: \mathbb{R} \rightarrow \mathbb{R}$

$$
X_{n}(w)= \begin{cases}n & \text { to } 0 \leq x \leq \frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\forall x>0: \quad X_{n}(\omega) \rightarrow 0
$$

Can see that, ass, in probability.
But: no L^{\prime} convergence.

$$
\left\|x_{n}(w)-x\right\|_{1}=\int\left\|x_{n}(w)-x\right\|_{1}=1
$$

Example. converges in probability, but not a.s.
"sliding blocks"
$f_{1}=\mathbb{1}_{[0,1]}$

$f_{2}=\mathbb{1}_{\left[0, \frac{1}{2}\right]}$

$f_{3}=\mathbb{1}_{\left[\frac{1}{2}, 1\right]}$

Similarly,

Example. converges in distribution, but not in probability.
$X_{n}=[0,1] \rightarrow \mathbb{R}, x_{1}=x_{2} \ldots \ldots \mathbb{1}_{\left[0, \frac{1}{2}\right]}$
$x=\mathbb{1}_{\left[\frac{1}{2}, 1\right]} \perp \square$
Obviously $x_{n} \nrightarrow x$ in probability but,
$P_{x_{1}}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)=P_{x_{2}}=P_{x_{3}}=\ldots=P_{x}$
So in distribution, $x_{n} \rightarrow x$.

Borel-Cantelli Theorem

(Ω, A, P) probability space, $\left(A_{n}\right)_{n}$ sequence of events in the probability space.
$P\left(A_{n}\right.$ infinitely often $):=P\left(A_{n}\right.$ i.o $)$
$=P\left(\left\{w \in \Omega \mid w \in A_{n}\right.\right.$ for infinitely many $\left.\left.n\right\}\right)$
Proposition: X_{n}, X r.v. on (Ω, A, P).
$X_{n} \rightarrow X$ a.s. $\Longleftrightarrow \forall_{\varepsilon>0}: P\left(\left|X_{n}-X\right|>\varepsilon\right.$ i.o. $)=0$
Theorem: Consider a sequence of events
$\left(A_{n}\right)_{n} \subset A$.
(1) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(A_{n}\right.$ i.o. $)=0$.
(2) If $\sum_{n=1}^{\infty} p\left(A_{n}\right)=\infty$, and if $\left(A_{n}\right)_{n}$ are independent, then $P\left(A_{n}\right.$ i.o. $)=1$.

Application in learning theory:
Assume that $P\left(\left|X_{n}-X\right|>\frac{1}{n}\right)<\delta_{n}$, and assume that $\sum_{n=1}^{\infty} \delta_{n}<\infty$.
Then $P\left(\left|X_{n}-X\right|>\frac{1}{n}\right.$ i.o. $)=0$. Then you can use Borel-Cantelli to prove that $P\left(\left|X_{n}-X\right|>\frac{1}{n}\right.$ i.o. $)=0$, thus $X_{n} \rightarrow X$ ass.

