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Lecture 22

Instructor: Vishnu Boddeti Scribe: Matthew McDerment

1 Limit Theorems: LLN and CLT

1.1 Strong Law of Large Numbers

Xn : (Ω, A, P ) → R i.i.d (independent and identically distributed). Assume the mean µ := E(Xn) <
∞, and V ar(Xn) =: r2 < ∞. Then: limx→∞

1
n

∑n
i=1 X = µa.s. and in L2.

Examples: Train error, test error. Converge to the true error. In statistics, compare if means of
two distributions are the same.

1.2 Weak Law of Large Numbers:

Converge in probability
Remarks: Many versions of this theorem exist (slightly relaxing i.i.d)

� "Strong law" ⇆ Convergence a.s.

� "Weak law" ⇆ Convergence in probability.

� There are cases where this fails, e.g. heavy failed distributions.

� If there is a selection bias in my samples (typical in human economic/rational behavior) the
LLN does not mitigate the bias.

1.3 Central Limit Theorem

(Xi)iϵ∅ i.i.d random variables with mean µ and variance r2 < ∞. Consider the RV Sn :
∑n

i=n Xi.

WE normalize it to Yn := Sn−n∗µ√
nr

(Which has mean 0 and std. deviation 1). Then Yn → Y in

distribution where Y N(0, 1)

Illustration: Xi coin, head = 1, tail = 0 Sn =
∑

Xiϵ[0, n]
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2 Concentration Inequalities

Motivation: Random projections

2.1 Theorem of Johnson-Lindenstrauss:

Can guarantee (for certain parameters ε,R)
(1− ε)||xi − xj ||Rd ≤ ||π(xi)− π(xj)||Rl ≤ (1 + ε)||xi − xj ||Rv Constructon/Proof steps:

� Assume you know ||xi − xj ||Rd = 1. Compute E(||π(xi)− π(xj)||Rl)

� P (|(||π(xi)− π(xj)|| − E(...))| > t) ?

3 Hoe�ding Inequality

Theorem 1 Hoe�ding: x1...xn : (ω,A, P ) → (R, B) RVs, independent, assume that Xiϵ[ai, bi]a.s.

for i = 1, 2, ...n. Let Sn :=
∑n

i=1(xi − E(xi)). Then for any t > 0, P (Sn ≥ t) ≤ exp( −2t2∑n
i=1(bi−ai)

)
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3.1 Application of Hoe�ding: SLLN

Prop: (Xi)iϵ∅ i.i.d. RV, a ≤ xib, let x have the same distribution as the xi then
1
n

∑n
i=1 xi → Exa.s.

Proof: Hoe�ding →

� P ( 1n
∑n

i=1 xi − E(x) > t) ≤ exp( −2(nt)2∑n
i=1(b−a)2 ) = exp( −2nt2

(b−a)2 )

� P ( 1n
∑

xi − E(x) < t) = P ( 1n
∑

(−xi)− E(−x) > t) ≤ exp( −2nt2

(b−a)2 )

Combining the two, we get

P (| 1n
∑

xi − E(x)| > t) ≤ 2exp(− 2nt2

(b−a)2 ).

Now we want to apply Borel-Cantelli to get a.s. convergence: Z = 1
n

∑n
i=1 xi∑∞

n=0 P (Zn − E(x) > t) ≤ 2 ∗ r ≤ ∞

� Substitute r := exp( −2t2

(b−a)2 )ϵ[0, 1]

� Observe: exp( −2nt2

(b−a)2 ) = rn

� Sum: 2
∑∞

n=0 r
n = 2 ∗ 1

1−r < ∞

Now Borel-Cantelli gives almost sure convergence. □
Remark: Hoe�ding is tight (cannot be improved without further assumptions). For fair coin tosses
it is tight. But not tight if coin is biased → need other inequalities.

4 Bernstein Inequality

Theorem 2 Bernstein: x1, ...xn, independent with 0 mean, |xi| < 1a.s. Let
σ2 = 1

n

∑n
i=1 var(xi). Then for all t > 0,

P ( 1n
∑n

i=1 xi > t) ≤ exp( −nt2

2(σ2+ t
3 )
)

5 Concentration Inequality For Funcs. With Bounded

Di�erence

Consider a function f : Rn → R (or more generally, f : xn → R for some arbitrary space x).
We say that f has the bounded di�erence property if there xists constants c1, c2...cn such that
x1...xnϵx|f(x1, ..., xi−1, xi, xi+1, ..., xn)x̃ϵx− f(x1, ..., xi−1, xi, xi+1, ..., xn)| ≤ ci
Example: f(x1...xn) =

∑n
i=1 xi and a ≤ xi ≤ b Vi, then f satis�es with ci = b− a.

Theorem 3 Mcdiarmid: x1, ..., xn independent RV; xiϵxi, f : x1 ∗ x2, ...xn → R function with

bounded di�erence property. Then, for any t > 0,

P (f(x1, x2.., xn)− E(f(x1, x2...xn)) > t) ≤ exp( −2t2∑n
i=1 C2

i
)
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Applications:

� Leave one out of error estimates

� Stability in ML

� Standard theoretical CS, randomized algos. (eg. traveling salesman problem)

� Largest eigenvalue of random symmetric matrices
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