1 Limit Theorems: LLN and CLT

1.1 Strong Law of Large Numbers

$X_{n}:(\Omega, A, P) \rightarrow \mathbb{R}$ i.i.d (independent and identically distributed). Assume the mean $\mu:=E\left(X_{n}\right)<$ ∞, and $\operatorname{Var}\left(X_{n}\right)=: r^{2}<\infty$. Then: $\lim _{x \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X=\mu$ a.s. and in L^{2}.

Examples: Train error, test error. Converge to the true error. In statistics, compare if means of two distributions are the same.

1.2 Weak Law of Large Numbers:

Converge in probability
Remarks: Many versions of this theorem exist (slightly relaxing i.i.d)

- "Strong law" \leftrightarrows Convergence a.s.
- "Weak law" \leftrightarrows Convergence in probability.
- There are cases where this fails, e.g. heavy failed distributions.
- If there is a selection bias in my samples (typical in human economic/rational behavior) the LLN does not mitigate the bias.

1.3 Central Limit Theorem

$\left(X_{i}\right)_{i \epsilon \varnothing}$ i.i.d random variables with mean μ and variance $r^{2}<\infty$. Consider the RV $S_{n}: \sum_{i=n}^{n} X_{i}$. WE normalize it to $Y_{n}:=\frac{S_{n}-n * \mu}{\sqrt{n} r}$ (Which has mean 0 and std. deviation 1). Then $Y_{n} \rightarrow Y$ in distribution where $Y N(0,1)$

Illustration: X_{i} coin, head $=1$, tail $=0 S_{n}=\sum X_{i} \epsilon[0, n]$

2 Concentration Inequalities

Motivation: Random projections

$$
\begin{aligned}
\because \therefore & \mathbb{R}^{d} \rightarrow d \text { is large } \\
\therefore \because & \rightarrow \text { want to project these } \\
\cdots & \text { points in to } \mathbb{R}^{l}, \quad l \text { "small" }
\end{aligned}
$$

2.1 Theorem of Johnson-Lindenstrauss:

Can guarantee (for certain parameters ε, R)
$(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{\mathbb{R}} d \leq\left\|\pi\left(x_{i}\right)-\pi\left(x_{j}\right)\right\|_{\mathbb{R}} l \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\| \mathbb{R} v$ Constructon/Proof steps:

- Assume you know $\left\|x_{i}-x_{j}\right\|_{\mathbb{R}} d=1$. Compute $E\left(\left\|\pi\left(x_{i}\right)-\pi\left(x_{j}\right)\right\|_{\mathbb{R}} l\right)$
- $P\left(\left|\left(\left|\mid \pi\left(x_{i}\right)-\pi\left(x_{j}\right) \|-E(\ldots)\right) \mid>t\right)\right.\right.$?

3 Hoeffding Inequality

Theorem 1 Hoeffding: $x_{1} \ldots x_{n}:(\omega, A, P) \rightarrow(\mathbb{R}, B)$ RVs, independent, assume that $X_{i} \epsilon\left[a_{i}, b_{i}\right]$ ass. for $i=1,2, \ldots n$. Let $S_{n}:=\sum_{i=1}^{n}\left(x_{i}-E\left(x_{i}\right)\right)$. Then for any $t>0, P\left(S_{n} \geq t\right) \leq \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)}\right)$

3.1 Application of Hoeffding: SLLN

Prop: $\left(X_{i}\right)_{i \in \varnothing}$ i.i.d. RV, $a \leq x_{i} b$, let x have the same distribution as the x_{i} then $\overline{\frac{1}{n} \sum_{i=1}^{n}} x_{i} \rightarrow$ Exa.s.

Proof: Hoeffding \rightarrow

- $P\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}-E(x)>t\right) \leq \exp \left(\frac{-2(n t)^{2}}{\sum_{i=1}^{n}(b-a)^{2}}\right)=\exp \left(\frac{-2 n t^{2}}{(b-a)^{2}}\right)$
- $P\left(\frac{1}{n} \sum x_{i}-E(x)<t\right)=P\left(\frac{1}{n} \sum\left(-x_{i}\right)-E(-x)>t\right) \leq \exp \left(\frac{-2 n t^{2}}{(b-a)^{2}}\right)$

Combining the two, we get
$P\left(\left|\frac{1}{n} \sum x_{i}-E(x)\right|>t\right) \leq 2 \exp \left(-\frac{2 n t^{2}}{(b-a)^{2}}\right)$.
Now we want to apply Borel-Cantelli to get a.s. convergence: $\mathbb{Z}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
$\sum_{n=0}^{\infty} P\left(\mathbb{Z}_{n}-E(x)>t\right) \leq 2 * r \leq \infty$

- Substitute $r:=\exp \left(\frac{-2 t^{2}}{(b-a)^{2}}\right) \epsilon[0,1]$
- Observe: $\exp \left(\frac{-2 n t^{2}}{(b-a)^{2}}\right)=r^{n}$
- Sum: $2 \sum_{n=0}^{\infty} r^{n}=2 * \frac{1}{1-r}<\infty$

Now Borel-Cantelli gives almost sure convergence.
Remark: Hoeffding is tight (cannot be improved without further assumptions). For fair coin tosses it is tight. But not tight if coin is biased \rightarrow need other inequalities.

4 Bernstein Inequality

Theorem 2 Bernstein: $x_{1}, \ldots x_{n}$, independent with 0 mean, $\left|x_{i}\right|<1$ a.s. Let $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)$. Then for all $t>0$, $P\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}>t\right) \leq \exp \left(\frac{-n t^{2}}{2\left(\sigma^{2}+\frac{t}{3}\right)}\right)$

5 Concentration Inequality For Funcs. With Bounded Difference

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (or more generally, $f: x^{n} \rightarrow \mathbb{R}$ for some arbitrary space x).
We say that f has the bounded difference property if there xists constants $c_{1}, c_{2} \ldots c_{n}$ such that $x_{1} \ldots x_{n} \epsilon x\left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \tilde{x} \epsilon x-f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}$ Example: $f\left(x_{1} \ldots x_{n}\right)=\sum_{i=1}^{n} x_{i}$ and $a \leq x_{i} \leq b \mathrm{Vi}$, then f satisfies with $c_{i}=b-a$.

Theorem 3 Mcdiarmid: x_{1}, \ldots, x_{n} independent $R V ; x_{i} \epsilon x_{i}, f: x_{1} * x_{2}, \ldots x_{n} \rightarrow \mathbb{R}$ function with bounded difference property. Then, for any $t>0$, $P\left(f\left(x_{1}, x_{2} . ., x_{n}\right)-E\left(f\left(x_{1}, x_{2} \ldots x_{n}\right)\right)>t\right) \leq \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n} C_{i}^{2}}\right)$

- Leave one out of error estimates
- Stability in ML
- Standard theoretical CS, randomized algos. (eg. traveling salesman problem)
- Largest eigenvalue of random symmetric matrices

