CSE 840: Computational Foundations of Artificial Intelligence November 29, 2023
 Product Space and Joint, Marginal, and Conditional Distribution and Expectation
 Instructor: Vishnu Boddeti
 Scribe: Richard Frost

1 Product Space, Joint Distribution

Definition 1 Consider two measureable spaces $\left(\Omega_{1}, \mathscr{A}_{1}\right),\left(\Omega_{2}, \mathscr{A}_{2}\right)$. The Product Space of these spaces is $\left(\Omega_{1} \times \Omega_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right)$. Where:

$$
\begin{aligned}
& \Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right) \mid \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\right\} \\
& \mathscr{A}_{1} \otimes \mathscr{A}_{2}=\left\{A_{1} \times A_{2} \mid A_{1} \in \mathscr{A}_{1}, A_{2} \in \mathscr{A}_{2}\right\}
\end{aligned}
$$

Consider two random variables:

$$
\begin{aligned}
& X_{1}:(\Omega, \mathscr{A}, \mathbb{P}) \rightarrow\left(\Omega_{1}, \mathscr{A}_{1}\right) \\
& X_{2}:(\Omega, \mathscr{A}, \mathbb{P}) \rightarrow\left(\Omega_{2}, \mathscr{A}_{2}\right)
\end{aligned}
$$

Then,

$$
\begin{gathered}
X:=\left(X_{1}, X_{2}\right):(\Omega, \mathscr{A}, \mathbb{P}) \rightarrow\left(\Omega_{1} \times \Omega_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right) \\
\left(X_{1}, X_{2}\right)(\omega)=\left(X_{1}(\omega), X_{2}(\omega)\right)
\end{gathered}
$$

Definition 2 For a product space $\left(\Omega_{1} \times \Omega_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right)$ with random variables X_{1} and X_{2}, the distribution $P_{\left(X_{1}, X_{2}\right)}$ over that space is called the Joint Distribution of X_{1} and X_{2}

Example from Machine Learning: (X, Y) where X is the input data and Y is the label.

Definition 3 Let $\left(\Omega_{1}, \mathscr{A}_{1}, P_{1}\right)$ and $\left(\Omega_{2}, \mathscr{A}_{2}, P_{2}\right)$ be two probability spaces. The Product Measure $P_{1} \otimes P_{2}$ on the product space $\left(\Omega_{1} \times \Omega_{2}, \mathscr{A}_{1} \otimes \mathscr{A}_{2}\right)$ is

$$
\left(P_{1} \otimes P_{2}\right)\left(\mathscr{A}_{1} \times A_{2}\right):=P_{1}\left(A_{1}\right) \cdot P_{2}\left(A_{2}\right)
$$

Theorem 4 Two random variables X_{1} and X_{2} are independent if and only if their joint distribution coincides with the product distributions:

$$
\left.P_{(} X_{1}, X_{2}\right)=P_{1} \otimes P_{2}
$$

2 Marginal Distributions

Definition 5 Consider the joint distribution $\left.P_{(} X_{1}, X_{2}\right)$ for two random variables $X:=\left(X_{1}, X_{2}\right)$. The Marginal Distribution of X with respect to X_{1} is the original distribution of X_{1} on $\left(\Omega_{1}, \mathscr{A}_{1}\right)$, namely $P_{X_{1}}$. Similarly for X_{2} as well.

Figure 1: Example of discrete marginal distribution

2.1 Marginal Distributions in the Case of Densities

$X, Y:(\Omega, \mathscr{A}, P) \rightarrow(\mathbb{R}, \mathscr{B}(\mathbb{R})) . z:=(X, Y)$. Assume that the joint distribution of z has a density of f on \mathbb{R}^{2}. Then we have the following statements:

1. Both X and Y have densities on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ given by,

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& f_{Y}(Y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

2. X and Y are independent if and only if

$$
f(x, y)-f_{X}(x) \cdot f_{Y}(y) a . s
$$

2.2 Mixed Cases

There are also join distributions where the random variables are of different types. For example, consider X is a continuous random variable with density (egg. an image (2d-continuous signal)) and Y is a discrete random variable (e.g. a classification "cat" "dog"...)

2.3 Special Case: Marginals of multivariate Normal

2.3.1 Two Dimensions

Consider a 2-dimensional normal random variable $X=\binom{X_{1}}{X_{2}}$ with mean $\mu=\binom{\mu_{1}}{\mu_{2}} \in \mathbb{R}^{2}$ and covariance $\Sigma=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2}^{2}\end{array}\right)$ Then the marginal distribution of X with respect to X_{1} is also a normal distribution with mean μ_{1} and variance σ_{1}^{2}

Figure 2: Illustration of marginal distribution of X for multivariate Normal

2.3.2 n Dimensions

$$
X=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Group the variables into,

$$
S=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right) \in \mathbb{R}^{k}, T=\left(\begin{array}{c}
X_{k+1} \\
\vdots \\
X_{n}
\end{array}\right) \in \mathbb{R}^{n-k}
$$

We want to look at the marginal of X with respect to S. Let the mean vector be,

$$
\mu=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right)
$$

Then,

$$
\mu_{S}:=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{k}
\end{array}\right), \mu_{T}:=\left(\begin{array}{c}
\mu_{k+1} \\
\vdots \\
\mu_{n}
\end{array}\right)
$$

We divide the covariance matrix Σ as follows:

$$
\Sigma=\left(\begin{array}{c|c}
\Sigma_{S, S} & \Sigma_{S, T} \\
\Sigma_{T, S} & \Sigma_{T, T}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Now the marginal of X with respect to S is a normal distribution on \mathbb{R}^{k} with mean μ_{S} and covariance $\sigma_{S S}$

3 Conditional Distribution

3.1 Discrete Case

Known conditional probabilities: $P(A \mid B)$ defined for events $A, B \in \mathscr{A}$, and $P(B)>0$. Let X, Y : $(\Omega, \mathscr{A}, P) \rightarrow \mathbb{R}$ be discrete random variables, $y \in \mathbb{R}$ such that $P(Y=y)>0$. Then we can define
the conditional probability measure:

$$
P_{X \mid Y=y}: A \mapsto P(X \in A \mid Y=y)
$$

This is a probability measure.

3.2 General Random Variables

It is very complicated and we will not cover it in this course.

3.3 Conditional distributions in the Case of Densities

Assume $Z:=(X, Y)$ has a joint density $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and marginal densities $f_{X}, f_{Y}: \mathbb{R} \rightarrow \mathbb{R}$. Then the function,

$$
f_{X \mid Y=y}(x):=\frac{f(x, y)}{f_{Y}(y)}
$$

is also a density on \mathbb{R}, called the conditional density of X given $Y=y$.

Example: Normal Distribution Let,

$$
\mu=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right), \Sigma=\left(\begin{array}{cc}
\Sigma_{S, S} & \Sigma_{S, T} \\
\Sigma_{T, S} & \Sigma_{T, T}
\end{array}\right)
$$

If $X=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \sim \mathscr{N}(\mu, \Sigma)$, then the conditional distributions of $X_{S}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ conditioned on $X_{T}=\left(\begin{array}{c}x_{k+1} \\ \vdots \\ x_{n}\end{array}\right)$ is given by:

$$
P_{X_{S} \mid X_{T}} \sim \mathscr{N}\left(\mu_{T}+\Sigma_{S . T} \Sigma_{T, T}^{-1}\left(X_{S}-\mu_{T}\right), \Sigma_{T, T}-\Sigma_{S, T}^{T} \Sigma_{S, S}^{-1} \Sigma_{S, T}\right)
$$

$$
\begin{aligned}
& \text { marginal } \\
& \text { (collapsing) }
\end{aligned}
$$

conditional (slicing)

Figure 3: Visualization of conditional distributions on multivariate normal

4 Conditional Expectation

Definition 6 Conditional Expectation in the Discrete Case Let $X, Y:(\Omega, \mathscr{A}, P) \rightarrow \mathbb{R}$. Assume X takes finitely (countably) many values $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ and Y takes finitely (countably) many values $y_{1}, y_{2}, \ldots, y_{m} i n \mathbb{R}$. Always with positive probability. Then,

$$
\mathbb{E}\left(Y \mid X=x_{i}\right):=\sum_{j=1}^{m} y_{j} P\left(Y=y_{j} \mid X=x_{i}\right)
$$

Example: two dice, $X=$ value of die $1, Y=$ value of die 2, independent dice.

$$
\begin{gathered}
\mathbb{E}(\operatorname{sum} \mid X=1)=\sum_{i=1}^{12} i \cdot P(\operatorname{sum}=i \mid X=1) \\
=\sum_{k=1}^{6}(1+k) \times P(Y=k \mid x=1) \\
=\sum_{k=1}^{6}(1+k) \times P(Y=k)=\sum_{k=1}^{6}(1+k) \cdot \frac{1}{6}=4.5
\end{gathered}
$$

So far we defined $\mathbb{E}\left(Y \mid X=x_{i}\right)$, but often we want to consider the "function" $\mathbb{E}(Y \mid X)(\omega)$. This is a random variable: $\mathbb{E}(Y \mid X):(\Omega, \mathscr{A}, P) \rightarrow(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. This leads to the following:

Definition 7 Discrete Case X, Y as before. Then the conditional expectation is defined as follows:

$$
\begin{gathered}
\mathbb{E}(Y \mid X):=f(x) \\
f(x)= \begin{cases}\mathbb{E}(Y \mid X=x) & \text { ifP }(X=x)>0 \\
\text { arbitrary, say 0 } & \text { otherwise }\end{cases}
\end{gathered}
$$

Caution: $\mathbb{E}(Y \mid X)$ is only defined almost surely
Now we want to consider the more general case. Sketch: X is a continuous random variable and Y is a discrete random variable $\sim y_{1}, y_{2}, \ldots, y_{5}$. We want to look at $\mathbb{E}(X \mid Y)$. Figure 4 gives a visualization.

Figure 4:

We want to "define $\mathbb{E}(X \mid Y):=\sum_{i=1}^{5} \mathbb{E}\left(X \mid Y=y_{i}\right) \cdot \mathbb{1}_{B_{i}}(\omega)$, but we need to make sure that it is measurable with respect to $\sigma(Y)$ (the "bins")

Definition 8 Consider random variables $x:\left(\Omega, \mathscr{A}_{0}, P\right) \rightarrow \mathbb{R}$ and $X \in L_{1}\left(\Omega, \mathscr{A}_{0}, P\right)$. Let \mathscr{A} be a sub- σ-algebra of \mathscr{A}_{0}. (intuition: \mathscr{A} will be the σ-algebra generated by the variable Y we want to condition on). The condition expectation of X given $\mathscr{A}, \mathbb{E}(X \mid \mathscr{A})$ is any random variable Z that satisfies:

1. Z is measurable with respect to \mathscr{A}
2. For all $A \in \mathscr{A}$ we have:

$$
\int_{A} X d P=\int_{A} Z d P
$$

- The existence of $\mathbb{E}(X \mid \mathscr{A})$ is not clear a priori; it needs to be proven.
- $\mathbb{E}(X \mid Y):=\mathbb{E}(X \mid \sigma(Y))$

Examples (Extreme Cases):

- $X=Y$, then $\mathbb{E}(X \mid Y)=\mathbb{E}(X)(a . s)$
- $X \Perp Y$, then $\mathbb{E}(X \mid Y)=\mathbb{E}(X)($ a.s $)$

4.1 The Case of Join Densities

Let $X, Z:(\Omega, \mathscr{A}, P) \rightarrow(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ have a joint density $f(x, z)$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function, and $Y:=g(Z)$. Assume we want to compute $\mathbb{E}(Y \mid X)=\mathbb{E}(g(Z) \mid X)$.

Recall X has density $f_{X}(x)=\int f(x, z) d z$. The conditional density of Z given $X=x$ is

$$
f_{X=x}(z)=\frac{f(x, z)}{f_{X}(x)}\left(\text { if } f_{X}(x) \neq 0\right)
$$

Now consider,

$$
h(x):=\int g(z) f_{X=x}(z) d z
$$

and define $\mathbb{E}(Y \mid X)=h(x)$

