CSE 840: Computational Foundations of Artificial Intelligence September 06, 2023
Transpose, Change of Basis, Rank of a Matrix, Determinant
Instructor: Vishnu Boddeti
Scribe: Griffin Klevering

1

1.1 Transpose

Definition 1 Given a matrix $A=\left(a_{i j}\right)_{i j} \in F^{m x n}$, the transpose matrix is given by $\left(A^{T}\right)_{k j}=A_{j k}$
$A=\left(\begin{array}{ccc}1 & -9 & 3 \\ 1 & 2 & -2 \\ -2 & 1 & 1\end{array}\right)$
$A^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 4 \\ 3 & 6\end{array}\right)$
If $F=\mathbb{C}$, then the conjugate transpose matrix is defined as, $\left(A^{*}\right)_{i j}=\bar{A}_{i j}$ $x=a+i b, \bar{x}=a-i b$
Useful in the context of the adjoint of an operator.

1.2 Change of Basis

Theorem 2 Consider the identity mapping $I: V \rightarrow V, x \longmapsto x$. Assume we fix a basis for v (both in source and target space), then the corresponding matrix defined as follows: $M(I, \beta, \beta)=A=\left(\begin{array}{ccc}1 & 0 & 0 \ldots \\ 0 & 1 & 0 \ldots \\ 0 \ldots & 0 \ldots & 1 \ldots\end{array}\right)$
Now consider $A=a_{1}, 2, \ldots, a_{n}$ and $\beta=b_{1}, b_{2}, \ldots, b_{n}$ both bases of v. How does the matrix of the identity mapping $I:(v, A) \longmapsto(V, \beta)$ look like? Since β is a basis, we can express the vectors in A as a linear combination:
$a_{1}=t_{11} b_{1}+t_{21} b_{2}+\ldots+t_{n 1} b_{n}$
$a_{2}=\ldots$.
Now we form the corresponding matrix, $T=\left(\begin{array}{ccc}t_{11} & \ldots & t_{1 n} \\ \ldots & \ldots & 0 \ldots \\ t_{n 1} & 0 \ldots & t_{n n}\end{array}\right)$ This matrix
represents the identity. In the basis A, the first basis vector a_{1} has the repre-

$$
\begin{aligned}
& \text { sentation } T=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\ldots
\end{array}\right) \\
& a_{1}=1 * 1_{1}+0 * a_{2}+\ldots+0 * a_{n} \\
& T\left(\begin{array}{c}
1 \\
0 \\
0 \\
\ldots
\end{array}\right)=\left(\begin{array}{c}
t_{1!} \\
t_{21} \\
t_{n 1} \\
\ldots
\end{array}\right) \text { ThisvectorgivesusTa, expressedinthebasis } \beta . \\
& t_{11}+g_{21} b_{2}+\ldots+t_{n 1} b_{n}=a_{1} \\
& T a_{1}=\left[a_{1}\right]_{\beta}
\end{aligned}
$$

Proposition 3 Let A, β bet two bases of V. Then the matrices $M(I, A, \beta)$ andM $(I, \beta$, A) and invertible and each is the inverse of the others.
$T_{A} \longrightarrow_{B}=T_{B}^{-1} \longmapsto{ }_{A} T^{-1}$ exists

Proposition 4 Let A, β be two bases of v. Consdier the transformation matrix $A=M(I, A, \beta)$ and $A^{-1}=M(I, \beta, A)$. Let $T: v \longmapsto v$ be a linear map and X : $M(T, A, A)$. Then $y:=A * x * A^{-1}$ represents T in the basis β, that is $y=M(T$ $\beta, \beta)$.

1.3 Rank of a Matrix

Definition $5 A \in F^{m x n}$. The column Rank of A is dim(span column vectors of A)). The row rank is $\operatorname{dim}(\operatorname{span}(r o w ~ v e c t o r s ~ o f ~ A) . ~$

Proposition 6 For a matrix, the rwo and column rank are always the same. We now call it the rank of the matrix.

Proposition $7 T \in L(V, W)$. Then $\operatorname{rank}(M(T))=\operatorname{dim}(\operatorname{range}(T))$. Note, we did not specify any bases and the result holds independent of choice of basis.

1.4 Determinant of a Matrix

Definition 8 Consider a linear mapping $d: F^{n x n} \longmapsto F$. Then d is called a determinant if:
(p1) d is a multilinear i.e. linear in each column of the matrix: Let A be a matrix of column $a_{1}, a_{1}, \ldots, a_{n}$. Consider column a_{i}, assume $a_{i}=a_{1}^{\prime}+a_{i}^{\prime \prime}$ for some $a_{i}^{\prime}, a_{i}^{\prime \prime} \in F^{n x n}$. Then it holds that
$\operatorname{det}\left(\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)=\operatorname{det}\left(\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right)+\operatorname{det}\left(\left(a_{1}, \ldots, a_{i}^{\prime \prime}, \ldots, a_{n}\right)-\operatorname{det}\left(\left(a_{1}, \ldots, \lambda, \ldots, a_{n}\right)=\right.\right.\right.\right.$ $\lambda\left(\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)\right.$
(p2) d is alternating: if A has two identical columns, then $\operatorname{det}(a)=0$
(p3) d is normed: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=1$

Theorem 9 The mapping d exists and is unique.
Based on (p1), (p2),(p3), we can now prove many important propoerties of the determinant:

- The determinant of a linear mapping does not depend on the basis. $\operatorname{det}(c * A)=$ $c^{n} \operatorname{det}(A)^{\prime} A \leftarrow F^{n x n}$
$-\operatorname{det}(A * B)-\operatorname{det}(A) * \operatorname{det}(B)$
$-\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
$-\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$ (if A is invertible)
- A intertible $\leftrightarrow \operatorname{det}(A)!=0$
$-\operatorname{det}(A+B)!=\operatorname{det}(A)+\operatorname{det}(B)$
- If A is an upper triangular, $\left(\begin{array}{cc}\lambda_{1} & * \\ * & \lambda_{n}\end{array}\right)$ then $\operatorname{det}(A)=\lambda_{1} * \lambda_{2} * \ldots \lambda_{n}$

Leibniz Formula: Denote by S_{n} the set of all permutations of 1,2,...n then $\operatorname{det}(A)=\Sigma_{\sigma \in S n} * \operatorname{sign}(\sigma) a_{1 r(1)} * \ldots * a_{n r(n)}$
$\Sigma_{\sigma \in S n}$ is all permutations, sign (σ) is the sign of a permutation, $a_{1 r(1)} * \ldots *$ $a_{n r(n)}$ is the position in the matrix.

Special cases:
$n=1 \operatorname{det}(a)=a$
$n=2 \operatorname{det}\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=a_{11} a_{22}-a_{12} a_{21}$
$n=3\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a *\left(\begin{array}{cc}e & f \\ h & i\end{array}\right)-b *\left(\begin{array}{cc}d & f \\ g & i\end{array}\right)+c *\left(\begin{array}{ll}d & e \\ g & h\end{array}\right)$

In general, there exists the formula of Laplace that expresses the determinant of a nxn matrix as a weighted linear combination of determinants of many (n-1) x (n-1) submatrices.
$\operatorname{det}(a)={ }^{n} \Sigma_{j=1} *(-1)^{i+j} b_{i j} * \operatorname{det}\left(B_{i j}\right)$

1.5 Geometric Intuition

Consider a nxn matrix A with columns $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=A$. Consider the unit cube $U=\left\{c_{1} e_{1}+\ldots+c_{n} e_{n} \mid o<=c_{i}<=1\right\}$

$U \longmapsto P:=\left\{c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n} \mid o<=c_{i}<=1\right\}$
Parallelotope

Then $\operatorname{det}(A)$ gives us the signed volume of the parallelotope P.
$\operatorname{det}(A)=$ product of eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of A.
$\operatorname{vol}(U)$ changes by a factor of $\lambda_{1} * \lambda_{2} * \lambda_{3}$

1.6 Application to integrals

Proposition $10 \Omega \in \mathbb{R}$ open set, $\sigma: \omega \rightarrow \mathbb{R}^{n}$ differentiable, $f: \sigma(\omega) \rightarrow \mathbb{R}$.
Then: $\int_{\sigma(\Omega)} f(y) d y=$

$$
\int_{\Omega} f(\sigma(x)) *\left|\operatorname{det}\left(\sigma^{\prime}(x)\right)\right| d x
$$

Observation 11σ differentiable, that is we can locally (on a small ball B around x) approximate σ by a linear function.
$\sigma^{\prime}=\left(\begin{array}{ccc}\frac{\delta \sigma_{1}}{\delta * x_{1}} & \cdots & \frac{\delta \sigma_{1}}{\delta * x_{n}} \\ \cdots & \cdots & \cdots \\ \frac{\delta \sigma_{n}}{\delta * x_{1}} & \cdots & \frac{\delta \sigma_{n}}{\delta * x_{n}}\end{array}\right)$
$\left.\operatorname{vol}(B) \approx \operatorname{vol}\left(\sigma^{\prime}(x)\right) * B\right)$
$\approx\left|\operatorname{det}\left(\sigma^{\prime}(x)\right)\right| * \operatorname{vol}(B)$
$f(y) * \operatorname{vol}(B) \approx f(\sigma(x)) * \operatorname{det}\left(\sigma^{\prime}(x)\right) \mid * \operatorname{vol}(B)$

$$
\begin{gathered}
\int_{\sigma(\Omega)} f(y) d y \\
\int_{\Omega} f(\sigma(x)) *\left|\operatorname{det}\left(\sigma^{\prime}(x)\right)\right| d x
\end{gathered}
$$

