CSE 840: Computational Foundations of Artificial Intelligence September 11, 2023
 Eigenvalues, Characteristic Polynomial, Trace of Matrix

Instructor: Vishnu Boddeti
Scribe: Abhinay Devapatla, Yangru Zhou, Yihua Zhang

1 Eigenvalues

Definition 1 Let $T: V \rightarrow V$. A scalar $\lambda \in F$ is called an eigenvalue if there exists a $v \in V$, $v \neq 0$, such that $T v=\lambda v$. A vector $v \neq 0$ with this property is called an eigenvector corresponding to the eigenvalue λ. The set of all eigenvalues of λ is called the eigenspace. $E(\lambda, T)=\operatorname{Ker}(T-\lambda I)$

Remark 2 The following are remarks.

- Eigenvalue/eigenvectors realizes a "scaling", $v \rightarrow \lambda v$ direction of vector v does not change.
- Many linear mappings do not have eigenvectors, e.g. rotation. This is not true for algebraically closed fields like $\mathbb{C} . \mathbb{R}$ is not algebraically closed.
- If λ is an eigenvevalue, it has many eigenvectors, e.g. if v is an eigenvector, then any $a \cdot v$ (a $\in K)$ is an eigenvector.

$$
T(a \cdot v)=a \cdot T v=a \cdot \lambda v=\lambda(a \cdot v) \Longrightarrow T(a \cdot v)=\lambda(a \cdot v)
$$

- Eigenvectors corresponding to distinct eigenvalues are linearly independent. The intuition behind that is as follows. Suppose there are two distinct eigenvalues λ_{1}, λ_{2} and $\lambda_{1} \neq \lambda_{2}$. Assume v_{1}, v_{2} are eigenvectors that are not linearly independent i.e. $v_{2}=c \cdot v_{1}$.

$$
\begin{gathered}
T v_{1}=\lambda_{1} v_{1} \\
T v_{2}=\lambda_{2} v_{2}=\lambda_{2}\left(c \cdot v_{1}\right) \\
T v_{2}=T\left(c \cdot v_{1}\right)=c \cdot T v_{1}=c \cdot \lambda_{1} v_{1} \\
T v_{2} \neq T v_{2}, \text { since } \lambda_{2}\left(c \cdot v_{1}\right) \neq c \cdot \lambda_{1} v_{1}
\end{gathered}
$$

This contradiction shows that the eigenvectors are linearly independent.

- Eigenvectors that correspond to the same eigenvalue do not need to be independent, e.g. v eigenvector $\rightarrow c \cdot v$ is also an eigenvector, but $v \xi c \cdot v$ are not linearly independent.
- They can be linearly independent: e.g. $A=I$, all eigenvalues are $1 . I \cdot v=1 \cdot v$. But eigenvectors v can be linearly independent.
- The eigenspace $E(\lambda, T)$ is always a linear subspace of V.

Proposition 3 For finite-dimensional vector space, the following statements are equivalent:
(i) λ eigenvalue of T
(ii) $T-\lambda I$ not injective
(iii) $T-\lambda I$ not subjective
(iv) $T-\lambda I$ not bijective

Proposition 4 Suppose V is a finite-dimensional vector space, $T \in L(V)$, and $\lambda_{1} \ldots \lambda_{m}$ are distinct eigenvalues of T. Then a sum of eigenspaces $E\left(\lambda_{1}, T\right)+E\left(\lambda_{2}, T\right)+\ldots+E\left(\lambda_{m}, T\right)$ is a direct sum. In particular $\operatorname{dim}\left(E\left(\lambda_{1}, T\right)\right)+\ldots+\operatorname{dim}\left(E\left(\lambda_{m}, T\right)\right) \leq \operatorname{dim} V$.

Theorem 5 Every operator $T: V \rightarrow V$ on a finite-dimensional vector space with a complex field has at least one eigenvalue.

Proof of Theorem 5; Let $\mathrm{n}=\operatorname{dim} \mathrm{V}$. Choose a vector $\mathrm{v} \in \mathrm{V}, \mathrm{v} \neq 0$. Then the set

$$
\mathrm{v}, \operatorname{Tv}, T^{2} \mathrm{v}, \ldots, T^{n} \mathrm{v}
$$

has to be linearly independent, since it consists of $n+1$ vectors in a n-dim vector space.
Find coefficients $a_{0}, a_{1}, \ldots, a_{n}$ such that

$$
a_{0} \mathrm{v}+a_{1} \mathrm{Tv}+a_{2} T^{2} \mathrm{v}+\ldots+a_{n} T^{n} \mathrm{v}=0
$$

Now consider a polynomial on \mathbb{C} with the same coefficients: $\mathrm{P}(\mathrm{z}):=a_{0}+a_{1} \mathrm{z}+\ldots+a_{n} z^{n}$.
Over \mathbb{C}, we can factorize polynomial as: $\mathrm{P}(\mathrm{z})=\mathrm{c} \cdot\left(\mathrm{z}-\lambda_{1}\right)\left(\left(\mathrm{z}-\lambda_{2}\right) \ldots\left(\mathrm{z}-\lambda_{m}\right)\right.$ where $\mathrm{m} \leq \mathrm{n}$.
Consider again: $a_{0} \mathrm{v}+a_{1} \mathrm{Tv}+a_{2} T^{2} \mathrm{v}+\ldots+a_{n} T^{n} \mathrm{v}=0$

$$
\begin{aligned}
& \Longrightarrow\left(a_{0}+a_{1} \mathrm{~T}+a_{2} T^{2}+\ldots+a_{n} T^{n}\right) \mathrm{v}=0 \\
& \Longrightarrow \mathrm{c} \cdot\left(\mathrm{~T}-\lambda_{1}\right)\left(\left(\mathrm{T}-\lambda_{2}\right) \ldots\left(\mathrm{T}-\lambda_{m}\right) \mathrm{v}=0\right.
\end{aligned}
$$

(factorization of polynomial \rightarrow factorization of operator)
$\Longrightarrow \mathrm{v} \in \operatorname{Ker}\left(^{*}\right)$ (injective $\leftrightarrow \operatorname{Ker} 0$)
$\Longrightarrow{ }^{*}$ is not an injective function
\Longrightarrow there exists $\mathrm{i} \in 1, \ldots, \mathrm{~m}$ such that $\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right.$ is not injective
$\Longrightarrow \lambda_{i}$ is an eigenvalue of T !
' v ' is not necessarily the eigenvector of T.

2 Characteristic Polynomial

Definition $6 A v=\lambda v$, where A is a nxn matrix and $v \neq 0$

$$
\begin{gathered}
\quad(A-\lambda I) v=0 \\
\Longrightarrow \quad v \in \operatorname{Ker}(A-\lambda I) \\
\Longrightarrow \operatorname{rank}(A-\lambda I)<n) \\
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{image}(T)) \\
\operatorname{dim}(\operatorname{Ker}(A-\lambda I)) \geq 1 \\
\Longrightarrow \operatorname{det}(A-\lambda I)=0
\end{gathered}
$$

Definition 7 The characteristic polynomial of a nxn matrix A is defined as $P_{A}(t):=\operatorname{det}(A-t I)$

$$
\begin{aligned}
& \text { Example: } A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
& \operatorname{det}(A-t I)=\operatorname{det}\left(\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)-t\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
a_{11}-t & a_{12} \\
a_{21} & a_{22}-t
\end{array}\right)\right)=\left(a_{11}-t\right)\left(a_{22}-t\right)-a_{12} a_{21}=t^{2}-t\left(a_{11}+a_{22}\right)+a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Observation 8 The following is an observation.

- $P_{A}(t)$ is a polynomial with degree n if A is a nxn matrix
- Characteristic polynomials do not depend on the choice of basis

Proof:

Consider A, basis transformation matrix U. Want to check if the characteristic polynomial for matrix A and $U A U^{-1}$ are the same.

$$
=\operatorname{det}\left(U A U^{-1}-t I\right)
$$

$=\operatorname{det}\left(U A U^{-1}-t U U^{-1}\right)$
$=\operatorname{det}\left(U(A-t I) U^{-1}\right)$
$=\operatorname{det}(U) \cdot \operatorname{det}(A-t I) \cdot \operatorname{det}\left(U^{-1}\right)$
$=\operatorname{det}(A-t I)$

- The roots of the characteristic polynomial correspond exactly to the eigenvalues of A.
- Over \mathbb{C}, the characteristic polynomial always has n roots, so the matrix has " n eigenvalues" (not necessarily unique).
- A is invertible $\Longleftrightarrow 0$ is not an eigenvalue.

If 0 is an eigenvalue, $A v=0 \cdot v=0, v \neq 0$
$\Longrightarrow \operatorname{Ker}(A)$ is non-trivial \Longleftrightarrow A not invertible

- Let $A \in L(V), \lambda$ is a eigenvalue of A. Then λ^{R} is an eigenvalue of A^{R}. Geometrically applying A twice will stretch the eigenvector twice: $\lambda \cdot \lambda=\lambda^{2}$
- Let A be invertible, λ be eigenvalue of A. Then Y_{λ} is an eigenvalue of A^{-1}. Geometrically inverse is unscaling $\rightarrow Y_{\lambda}$

Definition 9 For an operator A with eigenvalue λ, we define its geometric multiplicity as the dimension of the corresponding eigenspace $E \lambda, A$.

Definition 10 The algebraic multiplicity is the multiplicity of the root λ in the characteristic polynomial.

Remark 11 In general, geometric multiplicity and algebraic multiplicity are NOT the same.

Remark 12 Computing Eigenvalues and Eigenvectors

- Write down the characteristic polynomial, find the roots \rightarrow eigenvalues.
- To compute eigenvectors, solve the linear system: $A x=\lambda x$

3 Trace of a Matrix

Definition 13 The track of a square matrix $A \in F^{n x n}$ is the sum of its diagonal elements:
$\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$

Remark 14 The following are remarks.

- tr: $\mathbb{R}^{n x n} \rightarrow \mathbb{R}$ is a linear operator in particular, $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(A \cdot B)=\operatorname{tr}(B \cdot A)$. NOTE: $\operatorname{tr}(A \cdot B) \neq \operatorname{tr}(A) \cdot \operatorname{tr}(B)$
- trace does not depend on the choice of basis

Let $T \in L(V)$, and U and W be two bases of V. Then: $\operatorname{tr}(M(T, U))=\operatorname{tr}(M(T, W))$

- The trace of an operator equal to the sum of its complex eigenvalues.

$$
\tilde{A}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \text { w.r.t some basis } v_{1}, v_{2}, \ldots, v_{n}
$$

$\operatorname{tr}(\tilde{A})=\sum_{i=1}^{n} \lambda_{i}$
Over \mathbb{C}, we can always find basis of eigenvectors: $A \in \mathbb{R}^{n x n}$
Over $\mathbb{C} I$ can find the representation: $\tilde{A}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{n}\end{array}\right), \lambda_{i} \in \mathbb{C}$

$$
\operatorname{tr}(\tilde{A})=\sum \lambda_{i}=\sum_{i=1}^{n} a_{i i}=\operatorname{tr}(A) \Longrightarrow \sum \lambda_{i} \in \mathbb{R}
$$

- trace equals the negative of the coefficient corresponding to the ($n-1$) degree term of the characteristic polynomial.
$P_{A}(t)=t^{n}+a_{n-1} t^{n-1}+\ldots$
- $\operatorname{tr}(A)=$ sum of its eigenvalues (if exists)
- $\operatorname{det}(A)=$ product of its eigenvalues (if exists)

Example: Consider a rotation matrix

- $\mathrm{R}(\theta)=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
- $R(\theta)$ does not have any real eigenvalues
- The trace of $\mathrm{R}(\theta)$ is $2 \cos \theta$
- The characteristic polynomial of $\mathrm{R}(\theta)$ is: $P_{R(\theta)}(t):=\operatorname{det}(\mathrm{R}(\theta)-\mathrm{tI})$

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{cc}
\cos \theta-t & -\sin \theta \\
\sin \theta & \cos \theta-t
\end{array}\right) \\
& =(\cos \theta-t)^{2}+\sin ^{2} \theta \\
& =t^{2}=2 \cos \theta \cdot t+\cos ^{2} \theta+\sin ^{2} \theta \\
& =t^{2}-2 \cos \theta \cdot t+1
\end{aligned}
$$

- The roots of the characteristic polynomial

$$
\lambda_{1 / 2}=\frac{2 \cos \theta \pm \sqrt{(2 \cos \theta)^{2}-4}}{2}=\cos \theta \pm \Im \sin \theta
$$

- The matrix has a diagonal representation

$$
\begin{aligned}
& \left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& \left.\operatorname{tr}\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)\right)=\cos \theta+\Im \sin \theta+\cos \theta-\Im \sin \theta=2 \cos \theta
\end{aligned}
$$

