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1 Eigenvalues

Definition 1 Let T: V → V. A scalar λ ∈ F is called an eigenvalue if there exists a v ∈ V, v ̸= 0,
such that Tv = λv. A vector v ̸= 0 with this property is called an eigenvector corresponding to the
eigenvalue λ. The set of all eigenvalues of λ is called the eigenspace. E(λ,T) = Ker(T - λI)

Remark 2 The following are remarks.

• Eigenvalue/eigenvectors realizes a "scaling", v → λv direction of vector v does not change.

• Many linear mappings do not have eigenvectors, e.g. rotation. This is not true for algebraically
closed fields like C. R is not algebraically closed.

• If λ is an eigenvevalue, it has many eigenvectors, e.g. if v is an eigenvector, then any a · v (a
∈ K) is an eigenvector.

T(a · v) = a · Tv = a · λv = λ(a · v) =⇒ T(a · v) = λ(a · v)

• Eigenvectors corresponding to distinct eigenvalues are linearly independent. The intuition be-
hind that is as follows. Suppose there are two distinct eigenvalues λ1, λ2 and λ1 ̸= λ2. Assume
v1, v2 are eigenvectors that are not linearly independent i.e. v2 = c · v1.

Tv1 = λ1v1
Tv2 = λ2v2 = λ2(c ·v1)

Tv2 = T(c·v1) = c · Tv1 = c · λ1v1
Tv2 ̸= Tv2, since λ2(c ·v1) ̸= c · λ1v1

This contradiction shows that the eigenvectors are linearly independent.

• Eigenvectors that correspond to the same eigenvalue do not need to be independent, e.g. v
eigenvector → c · v is also an eigenvector, but v & c · v are not linearly independent.

• They can be linearly independent: e.g. A = I, all eigenvalues are 1. I · v = 1 · v. But
eigenvectors v can be linearly independent.

• The eigenspace E(λ,T) is always a linear subspace of V.

Proposition 3 For finite-dimensional vector space, the following statements are equivalent:

(i) λ eigenvalue of T

(ii) T - λI not injective

(iii) T - λI not subjective

(iv) T - λI not bijective
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Proposition 4 Suppose V is a finite-dimensional vector space, T ∈ L(V), and λ1...λm are distinct
eigenvalues of T. Then a sum of eigenspaces E(λ1,T) + E(λ2,T) + ... + E(λm,T) is a direct sum.
In particular dim(E(λ1,T)) + ... + dim(E(λm,T)) ≤ dim V.

Theorem 5 Every operator T: V → V on a finite-dimensional vector space with a complex field has
at least one eigenvalue.

Proof of Theorem 5: Let n = dim V. Choose a vector v ∈ V, v ̸= 0. Then the set
v, Tv, T 2v,..., Tnv

has to be linearly independent, since it consists of n+1 vectors in a n-dim vector space.

Find coefficients a0, a1,...,an such that
a0v + a1Tv + a2T

2v + ... + anT
nv = 0.

Now consider a polynomial on C with the same coefficients: P(z) := a0 + a1z + ... + anz
n.

Over C, we can factorize polynomial as: P(z) = c · (z - λ1)((z - λ2)....(z - λm) where m ≤ n.

Consider again: a0v + a1Tv + a2T
2v + ... + anT

nv = 0

=⇒ (a0 + a1T + a2T
2 + ... + anT

n)v = 0
=⇒ c · (T - λ1)((T - λ2)....(T - λm)v = 0

(factorization of polynomial → factorization of operator)
=⇒ v ∈ Ker(*) (injective ↔ Ker0)
=⇒ * is not an injective function

=⇒ there exists i ∈ 1,...., m such that (T - λiI is not injective
=⇒ λi is an eigenvalue of T!

’v’ is not necessarily the eigenvector of T.

□

2 Characteristic Polynomial

Definition 6 Av = λv, where A is a nxn matrix and v ̸= 0
(A - λI)v = 0

=⇒ v ∈ Ker(A - λI)
=⇒ rank(A - λI) < n)

dim(V) = dim(Ker(T)) + dim(image(T))
dim(Ker(A - λI)) ≥ 1
=⇒ det(A - λI) = 0

Definition 7 The characteristic polynomial of a nxn matrix A is defined as PA(t) := det(A - tI)

Example: A =
(
a11 a12
a21 a22

)

det(A - tI) = det(
(
a11 a12
a21 a22

)
- t

(
1 0
0 1

)
)

= det(
(
a11 − t a12
a21 a22 − t

)
) = (a11-t)(a22-t) - a12a21 = t2 - t(a11 + a22) + a11a22 - a12a21
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Observation 8 The following is an observation.

• PA(t) is a polynomial with degree n if A is a nxn matrix

• Characteristic polynomials do not depend on the choice of basis

Proof:
Consider A, basis transformation matrix U. Want to check if the characteristic poly-

nomial for matrix A and UAU−1 are the same.
= det(UAU−1 - tI)
= det(UAU−1 - tUU−1)
= det(U(A-tI)U−1)
= det(U) · det(A-tI) · det(U−1)
= det(A - tI) ⋄

• The roots of the characteristic polynomial correspond exactly to the eigenvalues of A.

• Over C, the characteristic polynomial always has n roots, so the matrix has "n eigenvalues"
(not necessarily unique).

• A is invertible ⇐⇒ 0 is not an eigenvalue.

If 0 is an eigenvalue, Av = 0 · v = 0, v ̸= 0

=⇒ Ker(A) is non-trivial ⇐⇒ A not invertible

• Let A ∈ L(V), λ is a eigenvalue of A. Then λR is an eigenvalue of AR. Geometrically applying
A twice will stretch the eigenvector twice: λ · λ = λ2

• Let A be invertible, λ be eigenvalue of A. Then Yλ is an eigenvalue of A−1. Geometrically
inverse is unscaling → Yλ

Definition 9 For an operator A with eigenvalue λ, we define its geometric multiplicity as the di-
mension of the corresponding eigenspace Eλ, A.

Definition 10 The algebraic multiplicity is the multiplicity of the root λ in the characteristic poly-
nomial.

Remark 11 In general, geometric multiplicity and algebraic multiplicity are NOT the same.

Remark 12 Computing Eigenvalues and Eigenvectors

• Write down the characteristic polynomial, find the roots → eigenvalues.

• To compute eigenvectors, solve the linear system: Ax = λx
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3 Trace of a Matrix

Definition 13 The track of a square matrix A ∈ Fnxn is the sum of its diagonal elements:

tr(A) =
∑n

i=1 aii

Remark 14 The following are remarks.

• tr: Rnxn → R is a linear operator in particular, tr(A+B) = tr(A) + tr(B)

• tr(A·B) = tr(B·A). NOTE: tr(A·B) ̸= tr(A)·tr(B)

• trace does not depend on the choice of basis

Let T ∈ L(V), and U and W be two bases of V. Then: tr(M(T,U)) = tr(M(T,W))

• The trace of an operator equal to the sum of its complex eigenvalues.

Ã =
(
λ1 0
0 λ2

)
w.r.t some basis v1, v2, ..., vn

tr(Ã) =
∑n

i=1 λi

Over C, we can always find basis of eigenvectors: A ∈ Rnxn

Over C I can find the representation: Ã =
(
λ1 0
0 λn

)
, λi ∈ C

tr(Ã) =
∑

λi =
∑n

i=1 aii = tr(A) =⇒
∑

λi ∈ R

• trace equals the negative of the coefficient corresponding to the (n-1) degree term of the char-
acteristic polynomial.

PA(t) = tn + an−1t
n−1 + ...

• tr(A) = sum of its eigenvalues (if exists)

• det(A) = product of its eigenvalues (if exists)

Example: Consider a rotation matrix

• R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
• R(θ) does not have any real eigenvalues

• The trace of R(θ) is 2cos θ

• The characteristic polynomial of R(θ) is: PR(θ)(t) := det(R(θ) - tI)

= det
(
cos θ − t − sin θ
sin θ cos θ − t

)
= (cos θ − t)2 + sin2 θ

= t2 = 2 cos θ · t+ cos2 θ + sin2 θ

= t2 − 2 cos θ · t+ 1
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• The roots of the characteristic polynomial

λ1/2 =
2 cos θ±

√
(2 cos θ)2−4

2 = cos θ ±ℑ sin θ

• The matrix has a diagonal representation(
λ1 0
0 λ2

)
tr
(
λ1 0
0 λ2

)
) = cos θ + ℑ sin θ + cos θ −ℑ sin θ = 2 cos θ
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