CSE 840: Computational Foundations of Artificial Intelligence		09 13, 2023	
Diagonalization, Triangular Matrices, Metric Spaces, Normed Spaces;p-norms			
Instructor: Vishnu Boddeti	Scribe: Nicole Schneider - Me	ahdi Masmoudi	

1 Diagonalization

Definition 1 An operator $T \in \mathcal{L}(v)$ is diagonalizable if there exists a basis of V such that the corresponding matrix is diagonal:

$$M(T) = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Nice property: Diagonal form is the best since we have the eigenvectors as the basis.

Proposition 2 Let V be a finite-dimension vector space. $A \in \mathcal{L}(v)$. Then the following statements are equivalent:

 (P_1) A is diagonalizable

 (P_2) The characteristic polynomial P_A can be decomposed into linear factors **AND** The algebraic multiplicity of the roots of P_A are equal to the geometric multiplicity

 (P_3) If $\lambda_1, \ldots \lambda_k$ are the pairwise distinct eigenvalues of A, then

$$V = E(A, \lambda_1) \oplus E(A, \lambda_2) \dots \oplus E(A, \lambda_k)$$

2 Triangular Matrices

Definition 3 A matrix is called upper triangular if it has the form

$$M(T) = \begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Proposition 4 $T \in \mathcal{L}(v), \Phi = \{v_1, v_2 \dots v_n\}$ a basis, then following are equivalent:

- $(P_1) M(T,D)$ is upper triangular
- $(P_2) Tv_j \in \text{span} \{v_1, v_2 \dots v_j\} \forall j = 1, 2, \dots n$

$$Tv_{1} = \begin{pmatrix} \lambda_{1} & a_{12} & a_{13} \\ 0 & \lambda_{2} & a_{23} \\ 0 & 0 & \lambda_{3} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_{1} \\ 0 \\ 0 \end{pmatrix} = \lambda_{1} \cdot v_{1}$$
$$Tv_{2} = \begin{pmatrix} \lambda_{1} & a_{12} & a_{13} \\ 0 & \lambda_{2} & a_{23} \\ 0 & 0 & \lambda_{3} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{12} \\ \lambda_{2} \\ 0 \end{pmatrix} = a_{12} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in \operatorname{span}(v_{1}, v_{2})$$

Proposition 5 V complex, finite-dim VS, $T \in \mathcal{L}(V)$. Then M(T) has an upper triangular form for some basis.

 \rightarrow If we are in the complex field, every matrix com be expressed as an upper triangular matrix.

Proposition 6 Suppose $T \in \mathcal{L}(v)$, V any finite-dim VS, has an upper triangular form. Then the entries on the diagonal are precisely the eigenvalues of T.

3 Metric Space

$$\begin{array}{ccc} {\rm Metric} \\ {\rm spaces} \end{array} \rightarrow \begin{array}{c} {\rm Normed} \\ {\rm spaces} \end{array} \begin{array}{c} {\rm inner} \\ \rightarrow {\rm product} \\ {\rm spaces} \end{array} \rightarrow \begin{array}{c} {\rm Hilbert} \\ {\rm spaces} \end{array}$$

Definition 7 Let x be a set. A function $d : x \times x \to \mathbb{R}$ is called a metric if the following conditions hold. $\forall u, v, w \in X$:

- $(P_1) \ d(u,v) > 0 \ if \ u \neq v \ and \ d(u,u) = 0$
- (P_2) d(u,v) = d(v,u) (symmetry)
- $(P_3) \quad d(u,v) \le d(u,w) + d(w,v)$

Example: assymetric measures

(i) friendship graph

(ii) $KL(p||q) \neq KL(q||p)$

<u>Notation</u>: Sequence: $(x_1, x_2 \ldots) \to (x_n)_{n \in \mathbb{N}}$

Definition 8 Sequence: $(x_1, x_2...) \rightarrow (x_n)_{n \in \mathbb{N}}$ A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (x, d) is called a Cauchy Sequence if $\forall \varepsilon > 0 \exists N \in \mathbb{N}, \forall n, m > N, d(x_n, x_m) < \varepsilon$

Definition 9 A sequence $(x_n)_{n\in\mathbb{N}}$ converges to $x\in X$ if $\forall \varepsilon > 0 \quad \exists N\in\mathbb{N} \quad \forall n>N, \quad d(x_n,x)<\varepsilon$

Notation: $x_n \to x$, $\lim_{n \to \infty} x_n = x$ sequence $(x_n)_{n \in \mathbb{N}} = 1/n$ on x = (0, 1)

Here $(x_n)_{n \in \mathbb{N}}$ is a Cauchy seq. But does not converge.

Sequence $(x_n)_{n\in\mathbb{N}} = 1/n$ on $\tilde{x} = [0,1]$. Here $(x_n)_{n\in\mathbb{N}}$ is a cauchy sequence that converses on \tilde{x} to 0

Definition 10 A metric space is called complete if every Cauchy sequence converges.

Notation: $B_{\epsilon}(u) := \{x \in X \mid d(x, u) \leq \varepsilon\} \rightarrow \varepsilon$ - ball

Definition 11 A set $A \subseteq x$ is called <u>closed</u> if all Cauchy sequences converge and have their limit point of A.

Definition 12 A set $A \subseteq x$ is called open if:

$$\forall a \in A \quad \exists \varepsilon > 0 : \quad B_{\epsilon}(a) \subset A$$

- Set [0, 1] is closed.
- Set (0,1) is open.

• A set A can be neither open nor closed. e.g. [0,1).

Definition 13 A point $a \in A$ is an interior point of A if $\exists \varepsilon > 0$, s.t. $B_{\epsilon}(a) \subset A$.

• e.g. A = [0, 1], then $x \in (0, 1)$ are interior points.

Definition 14 The (topological) closure of a set A is defined as the set of points that can be approximated by Cauchy sequences in A:

$$\omega \in \bar{A} \Leftrightarrow \forall \varepsilon > 0 \exists z \in A : d(\omega, z) < \varepsilon$$

Notation: \overline{A} is the closure of A. $A \cup dA$ (always closed!)

Definition 15 The (topological) <u>interior</u> of a set A is defined as the set of interior points of A.

Notation: A^0

Definition 16 The (topological) boundary of a set A is defined as the set $\overline{A} \setminus A^{\circ}$.

$egin{array}{c} x \ ar{x} \ x^0 \end{array}$	= [0, 1) = [0, 1] = (0, 1)	$ \begin{array}{l} sometimes \\ \partial x = x \backslash x^0 \\ = \{0\} \end{array} $
=> bo	$undary\partial x$	$= \bar{x} \backslash x^0 = \{0, 1\}$

Definition 17 A set A is <u>dense</u> in X if we can approximate every $x \in X$ by a sequence in A. Formally, $\forall x \in X \quad \forall \in > 0, B_{\epsilon}(x) \cap A \neq \emptyset$.

Example: $\mathbb{Q} \subset \mathbb{R}$ is dense

Definition 18 A set $A \subset X$ is <u>bounded</u> if there exists D > 0 such that $\forall u, v \in A$ d(u, v) < D.

4 Norms

Definition 19 Let V be a vector space. A <u>norm</u> on V is a function $\|\cdot\| : V \to \mathbb{R}$ such that $\forall x, y \in V, \lambda \in F$, the following conditions hold:

- $(P_1) \|\lambda x\| = |\lambda| \|x\|$ (homogeneous)
- $(P_2) ||x+y|| \le ||x|| + ||y|| \ (triangle \ inequality)$
- $(P_3) x = 0 \Rightarrow ||x|| = 0$
- $(P_4) \quad \|x\| = 0 \Rightarrow x = 0$

 $\|\cdot\|$ is a semi-norm if $(P_1) - (P_3)$ are satisfied.

Intuition: norm(x) = "length of x"

=distance(x, 0)

Examples:

- Euclidean norm on \mathbb{R}^d : $||x|| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$
- Manhattan distance: $||x|| = \left(\sum_{i=1}^{d} |x_i|\right)$

5 p-Norm

Consider $V = \mathbb{R}^d$. Define $\|\cdot\|_P : \mathbb{R}^d \to \mathbb{R}$

$$\|x\|_p := \left(\sum_{i=1}^d |x_i|^p\right)^{1/p} \text{ for } 0$$

- $\|\cdot\|_p$ is a norm if $p \ge 1$
- <u>Unit balls</u>: the unit ball of a norm is the set of points such that norm ≤ 1 :

$$B_p := \left\{ x \in \mathbb{R}^2 \mid ||x||_p \leqslant 1 \right\}$$

Examples: \mathbb{R}^2

Definition 20 $||x||_{\infty} := \max |x_i|$ (is a norm) $||x||_0 := number of non-zero coordinates = \sum_{i=1}^d \mathbb{W} \{x_i \neq 0\} ||x||_0$ is not a norm

$$x = \begin{bmatrix} 1\\0 \end{bmatrix}, \|x\|_0 = 1; \lambda x = \begin{bmatrix} 5\\0 \end{bmatrix}, \|\lambda x\|_0 = 1$$
$$\lambda = 5 \qquad \neq 5.1$$