CSE 840: Computational Foundations of Artificial Intelligence September 18, 2023
 Norms and Spaces of Functions
 Instructor: Vishnu Boddeti
 Scribe: Michael Umanskiy, Danial Kamali, Amar Taj

1 Equivalence of Norms

Theorem 1 All norms on \mathbb{R}^{n} are (topologically) equivalent: If $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are two norms on \mathbb{R}^{n}, then there exists constants $\alpha, \beta>0$ such that:

$$
\forall x \in \mathbb{R}^{n}: \alpha\|x\|_{a} \leq\|x\|_{b} \leq \beta\|x\|_{a}
$$

Proof of Theorem 1: Without loss of generality (WLOG), we prove that if $\|\cdot\|$ is any norm on \mathbb{R}^{n}, then it is equivalent to $\|\cdot\|_{\infty}$ on \mathbb{R}^{n}.

First inequality: $\exists c_{1}>0: \forall x\|x\| \leq c_{1}\|x\|_{\infty}$
Let $x=\sum x_{i} e_{i}$ the representation of x in the standard basis of \mathbb{R}^{n}

$$
\|x\|=\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\| \leq \sum_{i=1}^{n}\left\|x_{i} e_{i}\right\|=\sum_{i}\left|x_{i}\right|\left\|e_{i}\right\| \leq \sum_{i}\|x\|_{\infty}\left\|e_{i}\right\|=\|x\|_{\infty} \sum_{i}\left\|e_{i}\right\|
$$

$$
\text { Second Inequality: } \exists c,>0 \forall x:\|x\|_{\infty}<c-\|x\|_{b}
$$

Let $S=\left\{x \in \mathbb{R}^{n}\| \| x \|_{\infty}=1\right\}$ be the unit sphere w.r.t. $\|\cdot\|_{\infty}$. Consider $f: S \rightarrow \mathbb{R}, f(x)>\|x\|_{a}$. The mapping f is continuous w.r.t. $\|\cdot\|_{\infty}$; this follows from the fact that:

$$
\|f(x)-f(y)\|=|\|x-y\|| \leq\|x-y\| \leq C_{1}\|x-y\|_{\infty}
$$

(Lipschitz continuity).
S is closed and bounded, so S is compact (from analysis). Any continuous mapping on a compact set takes its min and max. Define $m=\min f(x) \mid x \in S$. Then $\|x\|_{a}=m\|x\|_{b}$. Since $x \in S,\|x\|_{b}=1$. Thus, $m \leq\|x\|_{a} \leq M$ where M is the max of f on S.

2 Convex Sets are Unit balls of norms

Definition 2 Consider a real vector space, V. A set S is called convex if $\forall b \in[0,1]$ and $\forall x, y \in S$,

$$
b \cdot x+(1-b) \cdot y \in S
$$

Definition $3 A$ set $C \subset v$ is called symmetric if $z \in C \Longrightarrow-x \in C$.

Figure 1: A convex set holds all the points between x and y

Figure 3: Example of symmetric set

Figure 2: A set cannot be convex if values lie outside the set

Figure 4: Both are a part of set, c, and symmetric

Figure 5: The smallest factor, t , needed to multiply c to reach x

Theorem 4 1) Let $C \subset \mathbb{R}^{n}$ be closed, convex, symmetric, and has non-empty interior. Define $P(x):=\inf \{\lambda>0 \mid x \in \lambda * C\}$. Then P is a semi-norm. If C is bounded, then P is a norm, and its unit ball coincides with C, i.e., $C=\left\{x \in \mathbb{R}^{n} \mid P(x) \leq 1\right\}$.
2) For any norm $\|\cdot\|$ on \mathbb{R}^{n}, the set $C=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ is bounded, symmetric, closed, convex, and has non-empty interior.

Proof of Theorem 4 $\mathrm{p}(\mathrm{x})$ is well defined

Want to prove: given $\mathrm{x} \in \mathbb{R}^{d}$, the set

$$
\{t>0 \mid x \in t \cdot c\} \neq \varnothing
$$

We are going to prove:

$$
\exists \varepsilon>0 \text { such that }
$$

$$
B_{\varepsilon}(0)=\left\{e \in \mathbb{R}^{d} \mid\|e\|_{2}<\varepsilon\right\}
$$

Intuition:

- By assumption, C has at least one interior point.

$$
\begin{gathered}
v \in C^{0}=>\exists \varepsilon \text { such that } \\
B_{\varepsilon}(v) \in C=>v+B_{\varepsilon}(0)=\left\{v+e \mid e \in B_{\varepsilon}(0)\right\}
\end{gathered}
$$

Figure 6: Unit Norm at the origin from a ball containing an interior point

By symmetry,

$$
v+e \in C \Rightarrow-(v+e) \in C
$$

By convexity,

$$
\frac{1}{2}(v+e)+\frac{1}{2}(-(v+e))=e \in C
$$

So, $B_{\epsilon}(0) \subset C$, so the set $\{t>0 \mid x \in t \cdot C\}$ is non-empty.
The infimum of $\inf \{t>0 \mid x \in t \cdot C\}$ exists because

$$
\{t>0 \mid x \in t \cdot C\} \subset \mathbb{R}
$$

has 0 as its lower bound.
(P1)

$$
P(0)=0
$$

- have seen: $0 \in c$
- $\forall t>0: 0 \in 0 \cdot C$
$-\inf \{t \mid 0 \in t \cdot C\}=0$

$$
\Rightarrow P(0)=0
$$

(P2)

$$
P(\alpha x)=|\alpha| P(x)
$$

For all $\alpha>0$, we have

$$
p(\alpha \cdot x)=\inf \{t>0 \mid \alpha \cdot x \in t \cdot C\}
$$

$S:=\frac{t}{\alpha}$,

$$
\begin{gathered}
=\inf \{\alpha \cdot S>0 \mid x \in S \cdot C\} \\
=\alpha \cdot \inf \{S>0 \mid x \in S \cdot C\} \\
=\alpha P(x)
\end{gathered}
$$

$$
=>P(\alpha x)=|\alpha| P(x)
$$

By symmetry we also get

$$
P(-x)=P(x)
$$

Combining the two statements to say

$$
P(\alpha x)=|\alpha| P(x)
$$ (homogeneity)

(P3) Triangle - Inequality.

$$
\text { Consider } x, y \in \mathbb{R}^{d}, s, t>0 \text { such that: }
$$

$$
\frac{x}{s} \in C, \frac{y}{t} \in C .
$$

Observe:

$$
\frac{s}{s+t}+\frac{t}{s+t}=1
$$

Then, by convexity,

$$
\begin{gathered}
\frac{s}{s+t} \cdot \frac{x}{s}+\frac{t}{s+t} \cdot \frac{y}{t} \in C \\
\text { Because, } \frac{s}{s+t} \text { and } \frac{t}{s+t} \text { are two scalars that sum to } 1 . \\
\text { And that } \frac{x}{s} \text { and } \frac{y}{t} \in C \\
=>\frac{x+y}{s+t} \in C \\
=>\frac{x+y}{u_{0}} \in S \\
=>P(x+y)=\inf \{u>0 \mid x+y \in u \cdot C\} \leq u_{0} \leq s+t \\
=P(x)+P(y)
\end{gathered}
$$

s was chosen such that $x \in s . C$
t was chosen such that $y \in t . C$
Consider a sequence $\left(s_{i}\right)_{i \in \mathbb{N}}$ such that $x \in s_{i} \cdot c$ and $s_{i} \rightarrow p(x)$.
Similarly, $\left(t_{i}\right)_{i \in \mathbb{N}}$ such that $y \in t_{i} \cdot c$ and $t_{i} \rightarrow p(y)$.

$$
\forall i: P(x+y) \leq s_{i}+t_{i}
$$

Knowing $t_{i} \rightarrow p(y)$ and $s_{i} \rightarrow p(x)$
Since it satisfies all i, then it has to be valid for the limit points.

$$
\Rightarrow P(x+y) \leq P(x)+P(y)
$$

Property 4. $\quad P(x)=0 \Rightarrow x=0$.
$P(x)=0 \Longleftrightarrow \inf \{t>0 \mid x \in t \cdot c\}=0$
\Rightarrow There exists a sequence $\left(t_{k}\right)_{k \in \mathbb{N}}$ such that $t_{k} \rightarrow 0$ and $x \in t_{k} \cdot c \quad \forall k$.
Now assume that $x \neq 0$. Then the sequence $\left(\frac{x}{t_{k}}\right)_{k \in \mathbb{N}}$ is unbounded.
\Rightarrow contradiction since by definition we know that c is bounded.

2.1 Normed Function Spaces

2.1.1 Space of continuous functions

Definition 5 Let T be a metric space,

$$
e^{b}(T):=\{f: T \rightarrow \mathbb{R} \mid f \text { is continuous and bounded }\}
$$

Here, bounded means: $\longrightarrow(\exists c \in \mathbb{R}: \forall t \in T:|f(t)|<c)$

As norm on $e^{b}(T)$ we choose:

$$
\|f\|_{\infty}:=\sup _{t \in T}|f(t)|
$$

The norm exists since we are in the space of bounded functions, bounded from above.
Then the space $e^{b}(T)$ with norm $\|\cdot\|_{\infty}$ is called a Banach Space.
A more general version of the Banach Space: If $\left(x, d_{\|\cdot\|_{\infty}}\right)$ is a complete metric, then the normed space $\left(x,\|\cdot\|_{\infty}\right)$ is called a Banach Space.

Proof outline:

1. Needs to check vector space axioms.
2. Norm axioms.
3. Completeness: follows from the fact that $\|f\|_{\infty}$ induces uniform convergence. (Here, a sequence of functions will converge in this norm that we are using if the limit point is an element of the space)

2.1.2 Space of differentiable functions

Definition 6 Let $[a, b] \subset \mathbb{R}, \quad e^{\prime}([a, b])=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuously differentiable $\}$

Figure 7: Caption

Which norm?
Consider $\|\cdot\|_{\infty}$ With this norm, e^{\prime} is not complete. As shown in Fig 7 , we can create a sequence of functions f_{1} and f_{2}, etc. We can make these functions to be as close as we want to the limit function. We can never get to the limit function, which is not continuous.

Is there a better norm? The answer is Yes. Many norms exist. Let us consider a few examples.
Consider $\|f\|:=\sup _{t \in[a, b]} \max \left\{|f(t)|,\left|f^{\prime}(t)\right|\right\}$
Consider $\|f\|:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$
$e^{\prime}([a, b])$ with any of these two norms is a Banach Space.

