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1 Equivalence of Norms

Theorem 1 All norms on Rn are (topologically) equivalent: If || · ||a and || · ||b are two norms on
Rn, then there exists constants α, β > 0 such that:

∀x ∈ Rn : α||x||a ≤ ||x||b ≤ β||x||a

Proof of Theorem 1: Without loss of generality (WLOG), we prove that if || · || is any norm on
Rn, then it is equivalent to || · ||∞ on Rn.

First inequality: ∃c1 > 0 : ∀x∥x∥ ≤ c1∥x∥∞

Let x =
∑

xiei the representation of x in the standard basis of Rn

∥x∥ = ∥
∑n

i=1 xiei∥ ≤
∑n

i=1 ∥xiei∥ =
∑

i |xi|∥ei∥ ≤
∑

i ∥x∥∞∥ei∥ = ∥x∥∞
∑

i ∥ei∥

Second Inequality: ∃c,> 0∀x : ||x||∞ < c− ||x||b

Let S = {x ∈ Rn|||x||∞ = 1} be the unit sphere w.r.t. || · ||∞. Consider f : S → R, f(x) > ||x||a.
The mapping f is continuous w.r.t. || · ||∞; this follows from the fact that:

||f(x)− f(y)|| = |∥x− y∥| ≤ ∥x− y∥ ≤ C1∥x− y∥∞
(Lipschitz continuity).
S is closed and bounded, so S is compact (from analysis). Any continuous mapping on a compact set
takes its min and max. Define m = min f(x)|x ∈ S. Then ||x||a = m||x||b. Since x ∈ S, ||x||b = 1.
Thus, m ≤ ||x||a ≤ M where M is the max of f on S.

2 Convex Sets are Unit balls of norms

Definition 2 Consider a real vector space, V. A set S is called convex if ∀ b ∈ [0,1] and ∀ x,y ∈ S,

b · x+ (1− b) · y ∈ S

Definition 3 A set C ⊂ v is called symmetric if z ∈ C =⇒ -x ∈ C.
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Figure 1: A convex set holds all the points
between x and y

Figure 2: A set cannot be convex if values
lie outside the set

Figure 3: Example of symmetric set Figure 4: Both are a part of set, c, and
symmetric
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Figure 5: The smallest factor, t, needed to multiply c to reach x

Theorem 4 1) Let C ⊂ Rn be closed, convex, symmetric, and has non-empty interior. Define
P (x) := inf{λ > 0 |x ∈ λ ∗C}. Then P is a semi-norm. If C is bounded, then P is a norm, and its
unit ball coincides with C, i.e., C = {x ∈ Rn |P (x) ≤ 1}.

2) For any norm || · || on Rn, the set C = {x ∈ Rn | ||x|| ≤ 1} is bounded, symmetric, closed, convex,
and has non-empty interior.

Proof of Theorem 4: p(x) is well defined

Want to prove: given x ∈ Rd , the set

{t > 0|x ∈ t · c} ≠ ∅

We are going to prove:
∃ ε > 0 such that

Bε(0) = {e ∈ Rd|∥e∥2 < ε}

Intuition:

•By assumption, C has at least one interior point.

v ∈ C0 => ∃ε such that

Bε(v) ∈ C => v +Bε(0) = {v + e|e ∈ Bε(0)}
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Figure 6: Unit Norm at the origin from a ball containing an interior point

By symmetry,
v + e ∈ C ⇒ −(v + e) ∈ C

By convexity,
1

2
(v + e) +

1

2
(−(v + e)) = e ∈ C

So, Bϵ(0) ⊂ C, so the set {t > 0 | x ∈ t · C} is non-empty.
The infimum of inf{t > 0 | x ∈ t · C} exists because

{t > 0 | x ∈ t · C} ⊂ R

has 0 as its lower bound.

(P1)
P (0) = 0

- have seen: 0 ∈ c
- ∀t > 0 : 0 ∈ 0 · C
- inf{t | 0 ∈ t · C} = 0

⇒ P (0) = 0

(P2)
P (αx) = |α|P (x)

For all α > 0, we have
p(α · x) = inf{t > 0 | α · x ∈ t · C}

S := t
α ,

= inf{α · S > 0 | x ∈ S · C}

= α · inf{S > 0 | x ∈ S · C}

= αP (x)
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=> P (αx) = |α|P (x)

By symmetry we also get
P (−x) = P (x)

Combining the two statements to say

P (αx) = |α|P (x)

(homogeneity)

(P3) Triangle - Inequality.
Consider x, y ∈ Rd, s, t > 0 such that:

x

s
∈ C,

y

t
∈ C.

Observe:
s

s+ t
+

t

s+ t
= 1

Then, by convexity,
s

s+ t
.
x

s
+

t

s+ t
.
y

t
∈ C

Because,
s

s+ t
and

t

s+ t
are two scalars that sum to 1.

And that
x

s
and

y

t
∈ C

=>
x+ y

s+ t
∈ C

=>
x+ y

u0
∈ S

=> P (x+ y) = inf{u > 0 | x+ y ∈ u.C} ≤ u0 ≤ s+ t

= P (x) + P (y)

s was chosen such that x ∈ s.C

t was chosen such that y ∈ t.C

Consider a sequence (si)i∈N such that x ∈ si · c and si → p(x).

Similarly, (ti)i∈N such that y ∈ ti · c and ti → p(y).

∀i : P (x+ y) ≤ si + ti
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Knowing ti → p(y) and si → p(x)

Since it satisfies all i, then it has to be valid for the limit points.

⇒ P (x+ y) ≤ P (x) + P (y)

Property 4. P (x) = 0 ⇒ x = 0.

P (x) = 0 ⇐⇒ inf{t > 0|x ∈ t · c} = 0

⇒ There exists a sequence (tk)k∈N such that tk → 0 and x ∈ tk · c ∀k.

Now assume that x ̸= 0. Then the sequence
(

x
tk

)
k∈N is unbounded.

⇒ contradiction since by definition we know that c is bounded.

2.1 Normed Function Spaces

2.1.1 Space of continuous functions

Definition 5 Let T be a metric space,

eb(T ) := {f : T → R | f is continuous and bounded}

Here, bounded means: −→ (∃c ∈ R : ∀t ∈ T : |f(t)| < c)

As norm on eb(T ) we choose:

∥f∥∞ := sup
t∈T

|f(t)|

The norm exists since we are in the space of bounded functions, bounded from above.

Then the space eb(T ) with norm ∥ · ∥∞ is called a Banach Space.

A more general version of the Banach Space: If (x, d∥·∥∞) is a complete metric, then the normed
space (x, ∥ · ∥∞) is called a Banach Space.

Proof outline:

1. Needs to check vector space axioms.

2. Norm axioms.

3. Completeness: follows from the fact that ∥f∥∞ induces uniform convergence. (Here, a
sequence of functions will converge in this norm that we are using if the limit point is an
element of the space)

2.1.2 Space of differentiable functions

Definition 6 Let [a, b] ⊂ R, e′([a, b]) = {f : [a, b] → R|f is continuously differentiable }
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f2
f1

Limit function not in e'

Figure 7: Caption

Which norm?

Consider ∥ · ∥∞ With this norm, e′ is not complete. As shown in Fig 7, we can create a sequence
of functions f1 and f2, etc. We can make these functions to be as close as we want to the limit
function. We can never get to the limit function, which is not continuous.

Is there a better norm? The answer is Yes. Many norms exist. Let us consider a few examples.

Consider ∥f∥ := supt∈[a,b] max{|f(t)|, |f ′(t)|}

Consider ∥f∥ := ∥f∥∞ + ∥f ′∥∞

e′([a, b]) with any of these two norms is a Banach Space.
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