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1 Inner Product and Hilbert Spaces
• metric: measures distances
• norm: measures distances, lengths
• product: measure distances, lengths, angles

Figure 1: Inner product: ⟨x , y⟩ = ∥x∥ · ∥y∥ · cosα

In ML, we use cosine similarity: cos(θ) = ⟨x , y⟩
∥x∥·∥y∥ .

Inner product ↔ scalar product ↔ dot product

Definition 1 (inner product) Consider a vector space V . A mapping ⟨· , ·⟩ : V × V → F is
called a inner product if

(P1) (linearity) ⟨x1 + x2 , y⟩ = ⟨x1 , y⟩+ ⟨x2 , y⟩
(P2) (linearity) ⟨λx , y⟩ = λ⟨x , y⟩, (λ ∈ F )
(P3) (symmetry) ⟨x , y⟩ = ⟨y , x⟩ (if F is R); ⟨x , y⟩ = ⟨y , x⟩ (if F is C)
(P4) (positive definite) ⟨x , x⟩ ≥ 0

(P5) (positive definite) ⟨x , x⟩ = 0 ⇐⇒ x = 0

Examples:

• Euclidean inner product on Rn:

⟨x , y⟩ =
n∑

i=1

xiyi,

where x = [x1, . . . , xn]
⊤, and y = [y1, . . . , yn]

⊤

• On C, ⟨x , y⟩ =
∑n

i=1 xiȳi

• C({[a, b]}): ⟨f , g⟩ =
∫ b

a
f(t)g(t)dt is an inner product (but space would not be complete)

Definition 2 A vector space with a norm is called normed space. If a normed space is complete (all
Cauchy sequences converge), then V is called a Banach Space. A vector space with an inner product
is called a pre-Hillbert space. If it is additionally complete, then V is called a Hilbert space.
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Given an inner product, we can define a norm space; while given a norm operation, we may not find
a proper inner product.

Consider a vector space with an inner product ⟨· , ·⟩. Define ∥ · ∥ : V → R as ∥x∥ :=
√

⟨x , x⟩.
Then ∥ · ∥ is a norm on V , the norm is induced by ⟨· , ·⟩.

In general, the other way does not work.

Consider a vector space V with norm ∥ · ∥. Then d : V × V → R, d(x, y) := ∥x− y∥ is a metric on
V , the metric is induced by the norm. In general, the other direction does not work.

inner product ⇒ norm ⇒ metric.

inner product ⇍ norm ⇍ metric.

2 Orthogonal Basis and Projections

Definition 3 (orthogonal) Consider a pre-Hilbert-space V . Two vectors v1, v2 ∈ V are called
orthogonal if ⟨v1, v2⟩ = 0.

Notaion: v1 ⊥ v2.

Two sets V1, V2 ⊂ V are called orthogonal if ∀v1 ∈ V1, v2 ∈ V2 : ⟨v1, v2⟩ = 0.

Vectors are called orthonormal if additionally the two vectors have norm of 1 :

• ⟨v1, v2⟩ = 0

• ∥v1∥ = 1, ∥v2∥ = 1

A set of vectors v1, v2, . . . vn is called orthonormal if any two vectors are orthonormal.

For a set S ⊆ Y we define its orthogonal complement S⊥ as follows:

S⊥ := {v ∈ V | v ⊥ s,∀s ∈ S}

3 Orthogonal Projections

Definition 4 (projection) A ∈ L(V ) is called a projection if A2 = A.

Figure 2: Oblique projection
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Definition 5 Let U be a finite-dim subspace of a pre-Hilbert-space H. Then there exists a linear
projection PU : H → U , and ker(PU ) = U⊥. PU is then called the orthogonal projection of H on U .

Construction: Let v1, . . . vn be an orthogonal basis of U . Define PU : V → U by

Pu(ω) =

n∑
i=1

⟨ω, vi⟩
∥vi∥

vi.

Figure 3: Orthogonal projection

Remark 6 In an orthonormal basis u1 . . . un the representation of a vector v is given by

v =

n∑
i=1

⟨v, ui⟩ui.

Gram-Schmidt orthogonalization: It is a procedure that takes any basis v1 . . . vn of a finite-dim
vector space and transforms it into another basis u1 . . . un that is orthonormal.

Intrition: iterative procedure

Step 1. u1 = v1
∥v1∥ , U1 = span {u1}

Step k. Assume we already have u1, u2, . . . , uk−1

– Project vk on Uk−1 and keep "the rest"

ũk = vk − Pvk−1
(vk)

– Renormalize:
uk =

ũk

∥ũk∥

In practice use Householder reflections for a numerically stable orthogonalization.

4 Orthogonal Matrices

Definition 7 Let Q ∈ Rn×n be a matrix with orthonormal column vectors (w.r.t. Euclidean inner
product). Then Q is called an orthogonal matrix.

Definition 8 If Q ∈ Cn×n and the columns are orthonormal (writ. the standard inner product on
C ), then it is called unitary.
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Figure 4: Gram-Schmidt orthogonalization

Examples:

• Identity:
(

1 0
0 1

)
• Reflection:

(
1 0
0 −1

)
, reflection about x-axis

• Permutation:
(

0 1
1 0

)
• Rotation:

(
cos θ − sin θ
sin θ cos θ

)
• Rotation in R3: rotate about one of the axes:

Rθ,1 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Properties of orthogonal matrix Q:

• columns are orthogonal ⇔ rows are orthognd
• Q is always invertible, and Q−1 = Q⊤

• Q realizes an isometry : ∀v ∈ V, ∥Qv∥ = ∥v∥ −→ keeps lengths intact
• Q preserves angles: ⟨Qu,Qv⟩ = ⟨u, v⟩ ∀u, v ∈ V
• |detQ| = 1

The respective properties also hold for unitary matrices U . (U−1 = Ū⊤)

Theorem 9 Let S ∈ L(v) for a real vector spare V . Then the following are equivalent:

• S is an isometry: ∥Sv∥ = ∥v∥, v ∈ V .
• There exists an orthonormal basis of V such that the matrix of S has the following form:

M =


□ 0

□
□

0 □


where each of the little block

– either a 1× 1 matrix (one real number) with a value ±1
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– or a 2× 2 rotation matrix (
cos θ − sin θ
sin θ cos θ

)
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