Sep. 20, 2023

Lecture 7

Instructor: Vishnu Boddeti

Scribe: Sigi Liang

Inner Product and Hilbert Spaces 1

- metric: measures distances
- norm: measures distances, lengths
- product: measure distances, lengths, angles

Figure 1: Inner product: $\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \alpha$

In ML, we use cosine similarity: $\cos(\theta) = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$.

Inner product \leftrightarrow scalar product \leftrightarrow dot product

Definition 1 (inner product) Consider a vector space V. A mapping $\langle \cdot, \cdot \rangle : V \times V \to F$ is called a inner product if

- (P1) (linearity) $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$
- (P2) (linearity) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \ (\lambda \in F)$
- $(P3) \ (symmetry) \ \langle x \ , \ y \rangle = \langle y \ , \ x \rangle \ (if \ F \ is \ \mathbb{R}); \ \langle x \ , \ y \rangle = \overline{\langle y \ , \ x \rangle} \ (if \ F \ is \ \mathbb{C})$
- (P4) (positive definite) $\langle x, x \rangle \ge 0$
- (P5) (positive definite) $\langle x, x \rangle = 0 \iff x = 0$

Examples:

• Euclidean inner product on \mathbb{R}^n :

$$\langle x , y \rangle = \sum_{i=1}^{n} x_i y_i$$

- where $x = [x_1, \ldots, x_n]^\top$, and $y = [y_1, \ldots, y_n]^\top$ On \mathbb{C} , $\langle x, y \rangle = \sum_{i=1}^n x_i \bar{y_i}$ $\mathcal{C}(\{[a,b]\}): \langle f, g \rangle = \int_a^b f(t)g(t)dt$ is an inner product (but space would not be complete)

Definition 2 A vector space with a norm is called normed space. If a normed space is complete (all Cauchy sequences converge), then V is called a Banach Space. A vector space with an inner product is called a pre-Hilbert space. If it is additionally complete, then V is called a Hilbert space.

Given an inner product, we can define a norm space; while given a norm operation, we may not find a proper inner product.

Consider a vector space with an inner product $\langle \cdot, \cdot \rangle$. Define $\|\cdot\| : V \to \mathbb{R}$ as $\|x\| := \sqrt{\langle x, x \rangle}$. Then $\|\cdot\|$ is a norm on V, the norm is induced by $\langle \cdot, \cdot \rangle$.

In general, the other way does not work.

Consider a vector space V with norm $\|\cdot\|$. Then $d: V \times V \to \mathbb{R}$, $d(x, y) := \|x - y\|$ is a metric on V, the metric is induced by the norm. In general, the other direction does not work.

inner product \Rightarrow norm \Rightarrow metric.

inner product \notin norm \notin metric.

2 Orthogonal Basis and Projections

Definition 3 (orthogonal) Consider a pre-Hilbert-space V. Two vectors $v_1, v_2 \in V$ are called orthogonal if $\langle v_1, v_2 \rangle = 0$.

Notaion: $v_1 \perp v_2$.

Two sets $V_1, V_2 \subset V$ are called orthogonal if $\forall v_1 \in V_1, v_2 \in V_2 : \langle v_1, v_2 \rangle = 0$.

Vectors are called orthonormal if additionally the two vectors have norm of 1 :

- $\langle v_1, v_2 \rangle = 0$
- $||v_1|| = 1, ||v_2|| = 1$

A set of vectors v_1, v_2, \ldots, v_n is called orthonormal if any two vectors are orthonormal.

For a set $S \subseteq Y$ we define its orthogonal complement S^{\perp} as follows:

$$S^{\perp} := \{ v \in V \mid v \perp s, \forall s \in S \}$$

3 Orthogonal Projections

Definition 4 (projection) $A \in \mathcal{L}(V)$ is called a projection if $A^2 = A$.

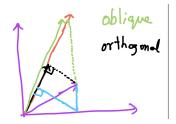


Figure 2: Oblique projection

Definition 5 Let U be a finite-dim subspace of a pre-Hilbert-space H. Then there exists a linear projection $P_U: H \to U$, and $\ker(P_U) = U^{\perp}$. P_U is then called the orthogonal projection of H on U.

Construction: Let $v_1, \ldots v_n$ be an orthogonal basis of U. Define $P_U: V \to U$ by

$$P_u(\omega) = \sum_{i=1}^n \frac{\langle \omega, v_i \rangle}{\|v_i\|} v_i.$$

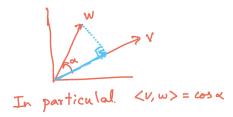


Figure 3: Orthogonal projection

Remark 6 In an orthonormal basis $u_1 \ldots u_n$ the representation of a vector v is given by

$$v = \sum_{i=1}^{n} \left\langle v, u_i \right\rangle u_i.$$

Gram-Schmidt orthogonalization: It is a procedure that takes any basis $v_1 \ldots v_n$ of a finite-dim vector space and transforms it into another basis $u_1 \ldots u_n$ that is orthonormal.

Intrition: iterative procedure

Step 1.
$$u_1 = \frac{v_1}{\|v_1\|}, U_1 = \text{span} \{u_1\}$$

Step k. Assume we already have u_1, u_2, \dots, u_{k-1}
- Project v_k on U_{k-1} and keep "the rest"

$$\tilde{u}_k = v_k - P_{v_{k-1}}\left(v_k\right)$$

- Renormalize:

 $u_k = \frac{\tilde{u}_k}{\|\tilde{u}_k\|}$

In practice use Householder reflections for a numerically stable orthogonalization.

4 Orthogonal Matrices

Definition 7 Let $Q \in \mathbb{R}^{n \times n}$ be a matrix with orthonormal column vectors (w.r.t. Euclidean inner product). Then Q is called an orthogonal matrix.

Definition 8 If $Q \in \mathbb{C}^{n \times n}$ and the columns are orthonormal (writ. the standard inner product on \mathbb{C}), then it is called unitary.

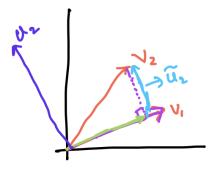


Figure 4: Gram-Schmidt orthogonalization

Examples:

• Identity:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Reflection: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, reflection about *x*-axis
• Permutation: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- Rotation: $\begin{pmatrix} 1 & 0 \end{pmatrix}$ • Rotation: $\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$
- Rotation in \mathbb{R}^3 : rotate about one of the axes:

$$R_{\theta,1} = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{array}\right)$$

Properties of orthogonal matrix Q:

- columns are orthogonal \Leftrightarrow rows are orthogond
- Q is always invertible, and $Q^{-1} = Q^{\top}$
- Q realizes an isometry : $\forall v \in V, ||Qv|| = ||v|| \longrightarrow$ keeps lengths intact
- Q preserves angles: $\langle Qu, Qv \rangle = \langle u, v \rangle \ \forall u, v \in V$
- $|\det Q| = 1$

The respective properties also hold for unitary matrices U. $(U^{-1} = \overline{U}^{\top})$

Theorem 9 Let $S \in \mathcal{L}(v)$ for a real vector space V. Then the following are equivalent:

- S is an isometry: $||Sv|| = ||v||, v \in V$.
- There exists an orthonormal basis of V such that the matrix of S has the following form:

$$M = \begin{pmatrix} \Box & & & 0 \\ & \Box & & \\ & & \Box & \\ 0 & & & \Box \end{pmatrix}$$

where each of the little block

- either a 1×1 matrix (one real number) with a value ± 1

- or a 2×2 rotation matrix

$$\left(\begin{array}{cc}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{array}\right)$$