Lecture 7

Instructor: Vishnu Boddeti

1 Inner Product and Hilbert Spaces

- metric: measures distances
- norm: measures distances, lengths
- product: measure distances, lengths, angles

Figure 1: Inner product: $\langle x, y\rangle=\|x\| \cdot\|y\| \cdot \cos \alpha$
In ML, we use cosine similarity: $\cos (\theta)=\frac{\langle x, y\rangle}{\|x\| \cdot\|y\|}$.
Inner product \leftrightarrow scalar product \leftrightarrow dot product
Definition 1 (inner product) Consider a vector space V. A mapping $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$ is called a inner product if
(P1) (linearity) $\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$
(P2) (linearity) $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle,(\lambda \in F)$
(P3) (symmetry) $\langle x, y\rangle=\langle y, x\rangle$ (if F is \mathbb{R}); $\langle x, y\rangle=\overline{\langle y, x\rangle}$ (if F is \mathbb{C})
(P4) (positive definite) $\langle x, x\rangle \geq 0$
(P5) (positive definite) $\langle x, x\rangle=0 \Longleftrightarrow x=0$

Examples:

- Euclidean inner product on \mathbb{R}^{n} :

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}
$$

where $x=\left[x_{1}, \ldots, x_{n}\right]^{\top}$, and $y=\left[y_{1}, \ldots, y_{n}\right]^{\top}$

- On $\mathbb{C},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$
- $\mathcal{C}(\{[a, b]\}):\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t$ is an inner product (but space would not be complete)

Definition $2 A$ vector space with a norm is called normed space. If a normed space is complete (all Cauchy sequences converge), then V is called a Banach Space. A vector space with an inner product is called a pre-Hillbert space. If it is additionally complete, then V is called a Hilbert space.

Given an inner product, we can define a norm space; while given a norm operation, we may not find a proper inner product.

Consider a vector space with an inner product $\langle\cdot, \cdot\rangle$. Define $\|\cdot\|: V \rightarrow \mathbb{R}$ as $\|x\|:=\sqrt{\langle x, x\rangle}$. Then $\|\cdot\|$ is a norm on V, the norm is induced by $\langle\cdot, \cdot\rangle$.

In general, the other way does not work.
Consider a vector space V with norm $\|\cdot\|$. Then $d: V \times V \rightarrow \mathbb{R}, d(x, y):=\|x-y\|$ is a metric on V, the metric is induced by the norm. In general, the other direction does not work.
inner product \Rightarrow norm \Rightarrow metric.
inner product \nLeftarrow norm \nLeftarrow metric.

2 Orthogonal Basis and Projections

Definition 3 (orthogonal) Consider a pre-Hilbert-space V. Two vectors $v_{1}, v_{2} \in V$ are called orthogonal if $\left\langle v_{1}, v_{2}\right\rangle=0$.

Notaion: $v_{1} \perp v_{2}$.
Two sets $V_{1}, V_{2} \subset V$ are called orthogonal if $\forall v_{1} \in V_{1}, v_{2} \in V_{2}:\left\langle v_{1}, v_{2}\right\rangle=0$.
Vectors are called orthonormal if additionally the two vectors have norm of 1 :

- $\left\langle v_{1}, v_{2}\right\rangle=0$
- $\left\|v_{1}\right\|=1,\left\|v_{2}\right\|=1$

A set of vectors $v_{1}, v_{2}, \ldots v_{n}$ is called orthonormal if any two vectors are orthonormal.
For a set $S \subseteq Y$ we define its orthogonal complement S^{\perp} as follows:

$$
S^{\perp}:=\{v \in V \mid v \perp s, \forall s \in S\}
$$

3 Orthogonal Projections

Definition 4 (projection) $A \in \mathcal{L}(V)$ is called a projection if $A^{2}=A$.

Figure 2: Oblique projection

Definition 5 Let U be a finite-dim subspace of a pre-Hilbert-space H. Then there exists a linear projection $P_{U}: H \rightarrow U$, and $\operatorname{ker}\left(P_{U}\right)=U^{\perp} . P_{U}$ is then called the orthogonal projection of H on U.

Construction: Let $v_{1}, \ldots v_{n}$ be an orthogonal basis of U. Define $P_{U}: V \rightarrow U$ by

$$
P_{u}(\omega)=\sum_{i=1}^{n} \frac{\left\langle\omega, v_{i}\right\rangle}{\left\|v_{i}\right\|} v_{i}
$$

In particulal. $\langle v, \omega\rangle=\cos \alpha$

Figure 3: Orthogonal projection

Remark 6 In an orthonormal basis $u_{1} \ldots u_{n}$ the representation of a vector v is given by

$$
v=\sum_{i=1}^{n}\left\langle v, u_{i}\right\rangle u_{i} .
$$

Gram-Schmidt orthogonalization: It is a procedure that takes any basis $v_{1} \ldots v_{n}$ of a finite-dim vector space and transforms it into another basis $u_{1} \ldots u_{n}$ that is orthonormal.

Intrition: iterative procedure
Step 1. $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}, U_{1}=\operatorname{span}\left\{u_{1}\right\}$
Step k. Assume we already have $u_{1}, u_{2}, \ldots, u_{k-1}$

- Project v_{k} on U_{k-1} and keep "the rest"

$$
\tilde{u}_{k}=v_{k}-P_{v_{k-1}}\left(v_{k}\right)
$$

- Renormalize:

$$
u_{k}=\frac{\tilde{u}_{k}}{\left\|\tilde{u}_{k}\right\|}
$$

In practice use Householder reflections for a numerically stable orthogonalization.

4 Orthogonal Matrices

Definition 7 Let $Q \in \mathbb{R}^{n \times n}$ be a matrix with orthonormal column vectors (w.r.t. Euclidean inner product). Then Q is called an orthogonal matrix.

Definition 8 If $Q \in \mathbb{C}^{n \times n}$ and the columns are orthonormal (writ. the standard inner product on $\mathbb{C})$, then it is called unitary.

Figure 4: Gram-Schmidt orthogonalization

Examples:

- Identity: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- Reflection: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, reflection about x-axis
- Permutation: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- Rotation: $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
- Rotation in \mathbb{R}^{3} : rotate about one of the axes:

$$
R_{\theta, 1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

Properties of orthogonal matrix Q :

- columns are orthogonal \Leftrightarrow rows are orthognd
- Q is always invertible, and $Q^{-1}=Q^{\top}$
- Q realizes an isometry : $\forall v \in V,\|Q v\|=\|v\| \longrightarrow$ keeps lengths intact
- Q preserves angles: $\langle Q u, Q v\rangle=\langle u, v\rangle \forall u, v \in V$
- $|\operatorname{det} Q|=1$

The respective properties also hold for unitary matrices $U .\left(U^{-1}=\bar{U}^{\top}\right)$

Theorem 9 Let $S \in \mathcal{L}(v)$ for a real vector spare V. Then the following are equivalent:

- S is an isometry: $\|S v\|=\|v\|, v \in V$.
- There exists an orthonormal basis of V such that the matrix of S has the following form:

$$
M=\left(\begin{array}{cccc}
\square & & & 0 \\
& \square & & \\
& & \square & \\
0 & & & \square
\end{array}\right)
$$

where each of the little block

- either a 1×1 matrix (one real number) with a value ± 1
- or a 2×2 rotation matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

