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1 Symmetric Matrices

Definition

Matrix A ∈ Rn×n is called a symmetric matrix if A = AT

Matrix A ∈ Cn×n is called a Hermitian matrix if A = ĀT

Proposition

Let A∈ Cn×n be Hermetian then all eigen values of A are real valued.
Eigenvectors that corresponds to distinct eigenvalue are orthogonal.

Proof

λ⟨x, x⟩ = ⟨λx, x⟩ = ⟨Ax, x⟩
Because Ax = λx
⟨x,Ax⟩ = ⟨x, λx⟩ = λ̄⟨x, x⟩

λ = λ̄ ∈ R (Unless x=0 vector, it has to be real)

Consider: (λ1, x1) and (λ2, x2) are eigenvalue-eigenvector pairs of A

λ1⟨x1, x2⟩ = ⟨λ1x1, x2⟩ = ⟨Ax1, x2⟩
= ⟨x1, Ax2⟩ = ⟨x1, λ2x2⟩

= λ̄2⟨x1, x2⟩

0 = λ1⟨x1, x2⟩ − λ2⟨x1, x2⟩
0 = (λ1 − λ2)⟨x1, x2⟩

Either λ1 = λ2

or if λ1 ̸= λ2, then ⟨x1, x2⟩ = 0

⇒ x1 ⊥ x2
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Definition

An operator T in L(V) on a Pre-Hilbert space V is called self-adjoint if
T ⟨v, w⟩ = ⟨v, Tw⟩

Sometimes it’s called a Hermitian Operator (on Cn) or a Symmetric Operator (on Rn).

Remarks:

Over Cn, self adjoint operators are represented by Hermetian Matrices. Similarly.
OverRn, self adjoint operators are represented by Symmetric Matrices.

Proposition

Let T in L(V ) be self adjoint. Then, T has atleast one eigen value and it’s real value

(holds both on CnandRn)

Proof(Sketch)

Let n := dim V and choose v ̸= 0.

Consider the vectors v, Tv, T 2v, . . . , Tnv. These vectors are linearly dependent (n + 1 vectors,
dim V = n). There exist coefficients a0, a1, . . . , an.

So, vectors with coefficients are:

a0v + a1Tv + . . .+ anT
nv

Consider the polynomial with these coefficients:

P (x) = a0 + a1x+ . . .+ anx
n = 0 = C(x2 + b1x+ c1) . . . (x

n + bmx+ cm)︸ ︷︷ ︸
(quadratic terms)

× (x− λ1) . . . (x− λm)︸ ︷︷ ︸
(linear terms)

Replace x by T :

0 = a0 + a1Tv + . . .+ anT
nv = C(T 2 + b1T + c1) . . . (T

n + bmT + cm)︸ ︷︷ ︸
(quadratic terms)

× (T − λ1I) . . . (T − λmI)︸ ︷︷ ︸
(linear terms)

v

Now, we can show that the quadratic terms are invertible, and we are left with at least one linear
factor:

0 = (T − λ1I) . . . (T − λnI)v
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There needs to exist at least one i such that (T − λiI) is not invertible.
So (T − λiI)v = 0.
This implies Tv = λiv.
which means λi is an eigenvalue of T .

2 Spectral Theorem for Symmetric/ Hermitian Matrices

Theorem 1 A symmetric matrix A ∈ Rn×n is orthognally diagonalizable: there exists an orthogonal
matrix Q ∈ Rn×n and a diagonal matrix D ∈ Rn×n s.t.

A = QDQ⊤, D =

λ1 0 0

0
. . . 0

0 0 λn


=

n∑
i=1

λi qiq
⊤
i︸︷︷︸

↪→ rank−1 matrices

Theorem 2 A Hermitian matrix A ∈ Cn×n is unitarily diagonalizable: there exists a unitary matrix
U and a diagonal matrix D. s.t.

A = UDŪ⊤

The entries of D are real-valued.

3 Positive Definite Matrices

Definition 3 A matrix A ∈ Rn×n is called a positive definite (PD) if ∀x ∈ Rn,

x ̸= 0 x⊤Ax > 0

For positive semi-definite (PSD) ∀x ∈ Rn x ̸= 0, x⊤Ax ≥ 0

Definition 4 A matrix A ∈ Cn×n is called a Gram matrix if there exists a set of vectors v1, . . . vn ∈
Cn such that aij = ⟨vi, vj⟩. Note: Gram matrices are Hermitian (Similarly on Rnan , then Gram
matrices are symmetric).

G = V ⊤V, V =

 1 1

V1
. . . Vn

1 1


CV ⊤

" Over C, we have that PD ⇒ self adjoint.

Over R, this is not true!
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⇒ there are matrices which are PD but not symmetric.

Example:

A =

(
1 1
−1 1

)

x⊤Ax = x2
1 + x2

2 > 0

→ So A is PD but not symmetric

→ over C, the same matrix is not PD since x2
1 + x2

2 can be negative!

Theorem 5 A ∈ Cn×n Hermitian. Then equivalent:

(i) A is PSD (PD)

(ii) All eigenvalues of A are ≥ 0 (> 0)

(iii) The mapping ⟨·, ·⟩A : Cn × Cn → C with

⟨x, y⟩A := ȳ⊤Ax

satisfies all properties of an inner product except one: if ⟨x, x⟩A = 0, this does not imply x = 0

(This mapping is an inner product)

(iv) A is a Gram matrix of n vectors which are not necessarily linearly independent (which are
linearly independent).

aij = ⟨xi, xj⟩

4 Roots of PSD matrices

Theorem 6 Let A ∈ Rn×n be symmetric, PSD. Then there exists a matrix B ∈ Rn×n, B is PSD
such that A = B2. Sometimes B is called the square root of A,

B = (A)1/2

Proof: Spectral theorem ⇒

A = UDU⊤, D diagonal

PSD ⇒ eigenvalues ⇒ 0
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D =

λ1 0 0

0
. . . 0

0 0 λn

 , λi ≥ 0

Define

√
D =


√
λ1 0 0

0
. . . 0

0 0
√
λn


and set

B := U
√
DU⊤

This matrix satisfies the property that B2 = A

5 Variational Characterization of Eigenvalues

Definition 7 Let A ∈ Rnxn be a symmetric matrix.

RA : Rn\{0} → R

x 7→ xTAx
xTx

is called the Rayleigh coefficient.

Proposition 8 Let A be symmetric, let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues and v1, v2, ..., vn the
eigenvectors of A. Then:

min
x∈Rn

RA(x) = min
||x||=1

xTAx = λ1, attained at x = v1

max
x∈Rn

RA(x) = max
||x||=1

xTAx = λn, attained at x = vn

Intuition:

Assume A is expressed in terms of the basis v1, . . . , vn

A =

λ1 0 0

0
. . . 0

0 0 λn


Let y be a vector, also represented in the same basis.

y = y1v1 + y2v2 + · · ·+ ynvn

yTAy = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n
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Among the vectors


1
0
. . .
0

 ,


0
1
0
. . .

 . . .


0
. . .
0
1

, the smallest result of yTAy would be given by the

vector


1
0
. . .
0

, (v1), and the value would be λ1.

More general proof (sketch):

Assume we start with the standard basis. Let Q=

 | | |
v1 v2 . . . vn
| | |

 be the basis transformation.

Observe: Q is orthogonal, we have

A = QTΛQ, where Λ is diagonal.

For a vector x=

x1

...
xn

 in the original basis, we now consider y := QTx.

RA(y) =
yTAy
yT y

=
(QTx)TA(QTx)
(QTx)T (QTx)

=
xTQQTΛQQTx

xTQQTx Note : (QTx)T = xTQ

=
xTΛx
xTx Note: Because Q is orthogonal, QQT = I

=
λ1x

2
1+···+λnx

2
n

||x||

min
||y||=1

RA(y) = min
||x||=1

λ1x
2
1 + · · ·+ λnx

2
n

Note: Q is orthogonal, which means norms are preserved

This minimum is attained for x=


1
0
. . .
0

, that is y = QTx = v1, with value

min
||y||=1

RA(y) = λ1
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Proposition 9 Consider the problem

min
||x||=1
x⊥v1

R(x).

The solution to this problem is x = v2, R(x) = λ2.

Intuition: Consider operator A restricted to the space V ⊥
1 := (span{v1})⊥. We know that on

this space, A is invariant and symmetric, so we can apply Rayleigh to this "smaller" space.

V ⊥
1 = span{v2, v3, . . . , vn}

If we apply Rayleigh to V ⊥
1 , we get the solution λ2, v2.

Theorem 10 (Min-Max Theorem):

Let A ∈ Rnxn be symmetric, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λk = min
Usubspace
dimU=k

max
x∈U\{0}

RA(x)

= max
Usubspace

dimU=n−k+1

min
x∈U\{0}

RA(x)

Intuition: for k=3,

Consider the subspace U, spanned by v1, v2, v3. As we saw before,

max
x∈U

RA(x) = λ3, attained by v3.

Consider another subspace U, spanned by v9, v10, v11.

max
x∈U

RA(x) = λ11

X-7


