```
CSE 840: Computational Foundations of Artificial Intelligence September 25, 2023
    Symmetric Matrices to Characterization of Eigenvalues
Instructor: Vishnu Boddeti
Scribe: Joe Romain, Aidan McCoy, Tashfain Ahmed
```


1 Symmetric Matrices

Definition

Matrix $\mathrm{A} \in \mathbb{R}^{n \times n}$ is called a symmetric matrix if $A=A^{T}$
Matrix $A \in \mathbb{C}^{n \times n}$ is called a Hermitian matrix if $A=\bar{A}^{T}$

Proposition

Let $\mathrm{A} \in \mathbb{C}^{n \times n}$ be Hermetian then all eigen values of A are real valued. Eigenvectors that corresponds to distinct eigenvalue are orthogonal.

Proof

$\lambda\langle x, x\rangle=\langle\lambda x, x\rangle=\langle A x, x\rangle$
Because Ax $=\lambda x$
$\langle x, A x\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle$
$\lambda=\bar{\lambda} \in \mathbb{R}($ Unless $\mathrm{x}=0$ vector, it has to be real)

Consider: $\left(\lambda_{1}, x_{1}\right)$ and $\left(\lambda_{2}, x_{2}\right)$ are eigenvalue-eigenvector pairs of A
$\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\left\langle A x_{1}, x_{2}\right\rangle$
$=\left\langle x_{1}, A x_{2}\right\rangle=\left\langle x_{1}, \lambda_{2} x_{2}\right\rangle$
$=\overline{\lambda_{2}}\left\langle x_{1}, x_{2}\right\rangle$
$0=\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle-\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle$
$0=\left(\lambda_{1}-\lambda_{2}\right)\left\langle x_{1}, x_{2}\right\rangle$

$$
\begin{aligned}
& \text { Either } \lambda_{1}=\lambda_{2} \\
& \text { or if } \lambda_{1} \neq \lambda_{2}, \text { then }\left\langle x_{1}, x_{2}\right\rangle=0 \\
& \quad \Rightarrow x_{1} \perp x_{2}
\end{aligned}
$$

Definition

An operator T in $\mathrm{L}(\mathrm{V})$ on a Pre-Hilbert space V is called self-adjoint if $\mathrm{T}\langle v, w\rangle=\langle v, T w\rangle$

Sometimes it's called a Hermitian Operator (on C^{n}) or a Symmetric Operator (on \mathbb{R}^{n}).

Remarks:

Over C^{n}, self adjoint operators are represented by Hermetian Matrices. Similarly.
Over \mathbb{R}^{n}, self adjoint operators are represented by Symmetric Matrices.

Proposition

Let T in $\mathcal{L}(V)$ be self adjoint. Then, T has atleast one eigen value and it's real value (holds both on C^{n} and \mathbb{R}^{n})

Proof(Sketch)

Let $n:=\operatorname{dim} V$ and choose $v \neq 0$.
Consider the vectors $v, T v, T^{2} v, \ldots, T^{n} v$. These vectors are linearly dependent ($n+1$ vectors, $\operatorname{dim} V=n)$. There exist coefficients $a_{0}, a_{1}, \ldots, a_{n}$.

So, vectors with coefficients are:

$$
a_{0} v+a_{1} T v+\ldots+a_{n} T^{n} v
$$

Consider the polynomial with these coefficients:

$$
P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0=\underbrace{C\left(x^{2}+b_{1} x+c_{1}\right) \ldots\left(x^{n}+b_{m} x+c_{m}\right)}_{\text {(quadratic terms) }} \times \underbrace{\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{m}\right)}_{\text {(linear terms) }}
$$

Replace x by T :
$0=a_{0}+a_{1} T v+\ldots+a_{n} T^{n} v=\underbrace{C\left(T^{2}+b_{1} T+c_{1}\right) \ldots\left(T^{n}+b_{m} T+c_{m}\right)}_{\text {(quadratic terms) }} \times \underbrace{\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{m} I\right)}_{\text {(linear terms) }} v$

Now, we can show that the quadratic terms are invertible, and we are left with at least one linear factor:

$$
0=\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{n} I\right) v
$$

There needs to exist at least one i such that $\left(T-\lambda_{i} I\right)$ is not invertible.
So $\left(T-\lambda_{i} I\right) v=0$.
This implies $T v=\lambda_{i} v$.
which means λ_{i} is an eigenvalue of T.

2 Spectral Theorem for Symmetric/ Hermitian Matrices

Theorem 1 A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is orthognally diagonalizable: there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ s.t.

$$
\begin{aligned}
A=Q D Q^{\top}, D= & {\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right] } \\
& =\sum_{i=1}^{n} \lambda_{i} \underbrace{q_{i} q_{i}^{\top}}_{\hookrightarrow}
\end{aligned}
$$

Theorem 2 A Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable: there exists a unitary matrix U and a diagonal matrix D. s.t.

$$
A=U D \bar{U}^{\top}
$$

The entries of D are real-valued.

3 Positive Definite Matrices

Definition $3 A$ matrix $A \in \mathbb{R}^{n \times n}$ is called a positive definite ($P D$) if $\forall x \in \mathbb{R}^{n}$,

$$
x \neq 0 \quad x^{\top} A x>0
$$

For positive semi-definite $(P S D) \forall x \in \mathbb{R}^{n} x \neq 0, \quad x^{\top} A x \geq 0$

Definition $4 A$ matrix $A \in \mathbb{C}^{n \times n}$ is called a Gram matrix if there exists a set of vectors $v_{1}, \ldots v_{n} \in$ \mathbb{C}^{n} such that $a_{i j}=\left\langle v_{i}, v_{j}\right\rangle$. Note: Gram matrices are Hermitian (Similarly on $\mathbb{R}^{\text {nan }}$, then Gram matrices are symmetric).

$$
\begin{aligned}
& G=V^{\top} V, \quad V=\left[\begin{array}{ccc}
1 & & 1 \\
V_{1} & \ddots & V_{n} \\
1 & & 1
\end{array}\right] \\
& C V^{\top}
\end{aligned}
$$

Over \mathbb{C}, we have that $P D \Rightarrow$ self adjoint.
Over \mathbb{R}, this is not true!
\Rightarrow there are matrices which are $P D$ but not symmetric.

Example:

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
x^{\top} A x=x_{1}^{2}+x_{2}^{2}>0
\end{gathered}
$$

\rightarrow So A is $P D$ but not symmetric
\rightarrow over \mathbb{C}, the same matrix is not $P D$ since $x_{1}^{2}+x_{2}^{2}$ can be negative!

Theorem $5 A \in \mathbb{C}^{n \times n}$ Hermitian. Then equivalent:
(i) A is $P S D(P D)$
(ii) All eigenvalues of A are $\geq 0 \quad(>0)$
(iii) The mapping $\langle\cdot, \cdot\rangle_{A}: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ with

$$
\langle x, y\rangle_{A}:=\bar{y}^{\top} A x
$$

satisfies all properties of an inner product except one: if $\langle x, x\rangle_{A}=0$, this does not imply $x=0$
(This mapping is an inner product)
(iv) A is a Gram matrix of n vectors which are not necessarily linearly independent (which are linearly independent).

$$
a_{i j}=\left\langle x_{i}, x_{j}\right\rangle
$$

4 Roots of PSD matrices

Theorem 6 Let $A \in \mathbb{R}^{n \times n}$ be symmetric, PSD. Then there exists a matrix $B \in \mathbb{R}^{n \times n}, B$ is $P S D$ such that $A=B^{2}$. Sometimes B is called the square root of A,

$$
B=(A)^{1 / 2}
$$

Proof: Spectral theorem \Rightarrow

$$
A=U D U^{\top}, D \text { diagonal }
$$

$P S D \Rightarrow$ eigenvalues $\Rightarrow 0$

$$
D=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right], \lambda_{i} \geq 0
$$

Define

$$
\sqrt{D}=\left[\begin{array}{ccc}
\sqrt{\lambda_{1}} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sqrt{\lambda_{n}}
\end{array}\right]
$$

and set

$$
B:=U \sqrt{D} U^{\top}
$$

This matrix satisfies the property that $B^{2}=A$

5 Variational Characterization of Eigenvalues

Definition 7 Let $A \in \mathbb{R}^{n x n}$ be a symmetric matrix.

$$
\begin{gathered}
R_{A}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R} \\
x \mapsto \frac{x^{T} A x}{x^{T} x}
\end{gathered}
$$

is called the Rayleigh coefficient.

Proposition 8 Let A be symmetric, let $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be the eigenvalues and $v_{1}, v_{2}, \ldots, v_{n}$ the eigenvectors of A. Then:

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} R_{A}(x)=\min _{\|x\|=1} x^{T} A x=\lambda_{1}, \text { attained at } x=v_{1} \\
& \max _{x \in \mathbb{R}^{n}} R_{A}(x)=\max _{\|x\|=1} x^{T} A x=\lambda_{n}, \text { attained at } x=v_{n}
\end{aligned}
$$

Intuition:

Assume A is expressed in terms of the basis v_{1}, \ldots, v_{n}
$A=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}\end{array}\right]$
Let y be a vector, also represented in the same basis.
$\mathrm{y}=y_{1} v_{1}+y_{2} v_{2}+\cdots+y_{n} v_{n}$
$y^{T} A y=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}$

Among the vectors $\left(\begin{array}{c}1 \\ 0 \\ \ldots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \ldots\end{array}\right) \ldots\left(\begin{array}{c}0 \\ \ldots \\ 0 \\ 1\end{array}\right)$, the smallest result of $y^{T} A y$ would be given by the vector $\left(\begin{array}{c}1 \\ 0 \\ \ldots \\ 0\end{array}\right),\left(v_{1}\right)$, and the value would be λ_{1}.

More general proof (sketch):
Assume we start with the standard basis. Let $\mathrm{Q}=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ v_{1} & v_{2} & \ldots & v_{n} \\ \mid & \mid & & \mid\end{array}\right)$ be the basis transformation.
Observe: Q is orthogonal, we have
$A=Q^{T} \Lambda Q$, where Λ is diagonal.
For a vector $\mathrm{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ in the original basis, we now consider $y:=Q^{T} x$.
$R_{A}(y)=\frac{y^{T} A y}{y^{T} y}$
$=\frac{\left(Q^{T} x\right)^{T} A\left(Q^{T} x\right)}{\left(Q^{T} x\right)^{T}\left(Q^{T} x\right)}$
$=\frac{x^{T} Q Q^{T} \Lambda Q Q^{T} x}{x^{T} Q Q^{T} x}$ Note $:\left(Q^{T} x\right)^{T}=x^{T} Q$
$=\frac{x^{T} \Lambda x}{x^{T} x}$ Note: Because Q is orthogonal, $Q Q^{T}=I$
$=\frac{\lambda_{1} x_{1}^{2}+\cdots+\lambda_{n} x_{n}^{2}}{\|x\|}$

$$
\min _{\|y\|=1} R_{A}(y)=\min _{\|x\|=1} \lambda_{1} x_{1}^{2}+\cdots+\lambda_{n} x_{n}^{2}
$$

Note: Q is orthogonal, which means norms are preserved

This minimum is attained for $\mathrm{x}=\left(\begin{array}{c}1 \\ 0 \\ \ldots \\ 0\end{array}\right)$, that is $y=Q^{T} x=v_{1}$, with value

$$
\min _{\|y\|=1} R_{A}(y)=\lambda_{1}
$$

Proposition 9 Consider the problem

$$
\min _{\substack{\|x\|=1 \\ x \perp v_{1}}} R(x)
$$

The solution to this problem is $x=v_{2}, R(x)=\lambda_{2}$.

Intuition: Consider operator A restricted to the space $V_{1}^{\perp}:=\left(\operatorname{span}\left\{v_{1}\right\}\right)^{\perp}$. We know that on this space, A is invariant and symmetric, so we can apply Rayleigh to this "smaller" space.

$$
V_{1}^{\perp}=\operatorname{span}\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}
$$

If we apply Rayleigh to V_{1}^{\perp}, we get the solution λ_{2}, v_{2}.

Theorem 10 (Min-Max Theorem):
Let $A \in \mathbb{R}^{n x n}$ be symmetric, with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Then

$$
\begin{aligned}
& \lambda_{k}=\min _{\begin{array}{c}
\text { Usubspace } \\
\text { dimU } U=k
\end{array}} \max _{x \in U \backslash\{0\}} R_{A}(x) \\
& =\max _{\begin{array}{c}
U \text { subspace } \\
\text { dimU }=n-k+1
\end{array}} \min _{x \in U \backslash\{0\}} R_{A}(x)
\end{aligned}
$$

Intuition: for $\mathrm{k}=3$,
Consider the subspace U , spanned by v_{1}, v_{2}, v_{3}. As we saw before,

$$
\max _{x \in U} R_{A}(x)=\lambda_{3}, \text { attained by } v_{3}
$$

Consider another subspace U , spanned by v_{9}, v_{10}, v_{11}.

$$
\max _{x \in U} R_{A}(x)=\lambda_{11}
$$

