CSE 840: Computational Foundations of Artificial Intelligence September 25, 2023

Symmetric Matrices to Characterization of Eigenvalues
Instructor: Vishnu Boddeti Scribe: Joe Romain, Aidan McCoy, Tashfain Ahmed

1 Symmetric Matrices

Definition

Matrix A € R"*" is called a symmetric matrix if A = :AT
Matrix A € C"*" is called a Hermitian matrix if A = AT
Proposition

Let Ae C"*™ be Hermetian then all eigen values of A are real valued.
Eigenvectors that corresponds to distinct eigenvalue are orthogonal.

Proof

Mz, z) = Az, z) = (Az, x)
Because Ax = Az
(x, Az) = (z, \x) = Mz, x)

A= X € R (Unless x=0 vector, it has to be real)

Consider: (A\1,z1) and (A2, x2) are eigenvalue-eigenvector pairs of A

)\1<$1,$2> = <>\1$1,5L'2> = <A$1,$2>
= (1, Axa) = (x1, Aa2)

= X2<331,$2>

0 = Ai{z1, 2) — Ao(z1, T2)
0= (A1 — Ao) (w1, 22)

Either A\ = \o
or if Ay # Ao, then (z1,22) =0
=x1 L 29



Definition

An operator T in L(V) on a Pre-Hilbert space V is called self-adjoint if
T (v,w) = (v, Tw)

Sometimes it’s called a Hermitian Operator (on C™) or a Symmetric Operator (on R™).
Remarks:

Over C", self adjoint operators are represented by Hermetian Matrices. Similarly.
OverR", self adjoint operators are represented by Symmetric Matrices.

Proposition

Let T in L£(V) be self adjoint. Then, T has atleast one eigen value and it’s real value

(holds both on C"andR™)

Proof(Sketch)

Let n := dim V and choose v # 0.

Consider the vectors v, Tv,T?v,...,T"v. These vectors are linearly dependent (n + 1 vectors,
dim V' = n). There exist coefficients ag, ay, ..., a,.

So, vectors with coefficients are:

apv +a1Tv+ ... +a,T"v

Consider the polynomial with these coefficients:

Plx)=ao+aix+...+a,2" =0=C(x® + b1z +c1) ... (2" +bpx +cm) X (= A1) ... (2 — \p)

(quadratic terms) (linear terms)

Replace x by T

0=ap+aTo+...+a,T"v=C(T*+ 0T +c1)...(T" + b, T+ ) x (T —MI) ... (T = \pI)v

(quadratic terms) (linear terms)

Now, we can show that the quadratic terms are invertible, and we are left with at least one linear
factor:

0=(T=MI)...(T = A\
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There needs to exist at least one ¢ such that (T — A;I) is not invertible.
So (T'— X\I)v =0.

This implies Tv = \;v.

which means ); is an eigenvalue of T'.

2 Spectral Theorem for Symmetric/ Hermitian Matrices

Theorem 1 A symmetric matrizx A € R™*™ is orthognally diagonalizable: there exists an orthogonal
matriz Q € R™*™ and a diagonal matriz D € R™*"™ s.t.

A 0
A=QDQ", D= o0
0 A

n

n
Z by quZT
i=1

— 'rankrf 1 matrices

Theorem 2 A Hermitian matriz A € C™*" is unitarily diagonalizable: there exists a unitary matriz
U and a diagonal matriz D. s.t.

A=UDUT

The entries of D are real-valued.

3 Positive Definite Matrices

Definition 3 A matrix A € R™"*"™ s called a positive definite (PD) if Vx € R",

t#0 z Az >0
For positive semi-definite (PSD)Vz € R" x #0, x' Az >0

Definition 4 A matriz A € C"*" is called a Gram matriz if there exists a set of vectors vy,...v, €

C™ such that a;; = (v;,v;). Note: Gram matrices are Hermitian (Similarly on R™™ | then Gram
matrices are symmetric).
1 1
S e _ .
G=V'V, V= Vi .V,
1 1
cv'’

A Over C, we have that PD = self adjoint.

Over R, this is not true!
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= there are matrices which are PD but not symmetric.

Example:

=4

2T Az =22 + 22 >0

— So A is PD but not symmetric

— over C, the same matrix is not PD since 27 + 3 can be negative!

Theorem 5 A € C**"™ Hermitian. Then equivalent:
(i) A is PSD (PD)
(ii) All eigenvalues of A are >0 (> 0)
(iii) The mapping {-,-)a : C" x C"* — C with
<x7y>A = gTAx

satisfies all properties of an inner product except one: if (x,x)a = 0, this does not imply x =0
(This mapping is an inner product)

(iv) A is a Gram matriz of n vectors which are not necessarily linearly independent (which are
linearly independent).

aij = (T, ;)
4 Roots of PSD matrices

Theorem 6 Let A € R"™™ be symmetric, PSD. Then there exists a matriz B € R"*" B is PSD
such that A = B%. Sometimes B is called the square root of A,

B =(A)'/?
Proof: Spectral theorem =
A=UDU",D diagonal

PSD = eigenvalues = 0
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A0 0
D=1¢g . ol|:N>0
0 0 M\,
Define
VAL 0 0
VD = 0 . 0
0 0 vV
and set

B:=UVDU'

This matrix satisfies the property that B2 = A

5 Variational Characterization of Eigenvalues
Definition 7 Let A € R™"™ be a symmetric matrix.

Ra:RM{0} 5 R

xT Ax
Ty

T =

is called the Rayleigh coefficient.

Proposition 8 Let A be symmetric, let Ay < Ao < --- <\, be the eigenvalues and vy, vs, ..., v, the
eigenvectors of A. Then:

min R4(z) = min zT Ax = A1, attained at x = vq
zeR™ [|z||=1

max Ra(z) = max 27 Az = \,, attained at © = v,
weRn [Jz]|=1

Intuition:

Assume A is expressed in terms of the basis vy,...,v,
A0 0

A=109 - o
0 0 M,

Let y be a vector, also represented in the same basis.
Yy =101 + Y22 + -+ YnUn
y" Ay = Myf + Aays + - + Ay
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1 0 0

Among the vectors , (1) . 0 , the smallest result of y7 Ay would be given by the
0 1
1
vector 0 , (v1), and the value would be A;.
0

More general proof (sketch):

Assume we start with the standard basis. Let Q= | v1 w2 ... v, | be the basis transformation.

Observe: Q is orthogonal, we have

A = QTAQ, where A is diagonal.

T
For a vector x= | : | in the original basis, we now consider y := QTx.
Ty
TA
R — Yy Ay
A(y) Ty
_ (Q@"2)TA(Qx)
—@T)T Q)
TNHOT T
= % Note : (QTz)T =27Q
T
= xxTA; Note: Because Q is orthogonal, QQT = I
B ANz AN 22
(]|
min Ra(y) = min A\jz? + -+ \,22
lyll=1 llzl|=1
Note: Q is orthogonal, which means norms are preserved
1
This minimum is attained for x= 0 , that is y = QT2 = vy, with value
0

min R4(y) = M
llyll=1
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Proposition 9 Consider the problem

min R(z).
lle]|=1
rlvg

The solution to this problem is x = vo, R(z) = 2.

Intuition: Consider operator A restricted to the space Vi* := (span{vi})t. We know that on
this space, A is invariant and symmetric, so we can apply Rayleigh to this "smaller" space.

‘/IJ_ = span{v2,1)3, s 7U7L}

If we apply Rayleigh to V-, we get the solution Ay, vo.

Theorem 10 (Min-Max Theorem):

Let A € R™™ be symmetric, with eigenvalues A\ < Ao < -+ < \,. Then

Ar = min max Ryu(x)
Usubspace zcU\{0}
dimU=k

= max min Ry (x)

Usubspace  xzeU\{0}
dimU=n—k+1

Intuition: for k=3,

Consider the subspace U, spanned by vy, vs,v3. As we saw before,

max Ra(x) = A3, attained by vs.
xeU

Consider another subspace U, spanned by vg, v1g, U11-

max Ra(x) = A1
zeU
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