CSE 840: Computational Foundations of Artificial Intelligence September 25, 2023

Symmetric Matrices to Characterization of Eigenvalues

Instructor: Vishnu Boddeti Scribe: Joe Romain, Aidan McCoy, Tashfain Ahmed

1 Symmetric Matrices

Definition

Matrix $A \in \mathbb{R}^{n \times n}$ is called a symmetric matrix if $A = A^T$ Matrix $A \in \mathbb{C}^{n \times n}$ is called a Hermitian matrix if $A = \overline{A}^T$

Proposition

Let $A \in \mathbb{C}^{n \times n}$ be Hermetian then all eigen values of A are real valued. Eigenvectors that corresponds to distinct eigenvalue are orthogonal.

Proof

$$\begin{split} \lambda \langle x, x \rangle &= \langle \lambda x, x \rangle = \langle Ax, x \rangle \\ \text{Because Ax} &= \lambda x \\ \langle x, Ax \rangle &= \langle x, \lambda x \rangle = \bar{\lambda} \langle x, x \rangle \\ \lambda &= \bar{\lambda} \in \mathbb{R} \text{ (Unless x=0 vector, it has to be real)} \end{split}$$

Consider: (λ_1, x_1) and (λ_2, x_2) are eigenvalue-eigenvector pairs of A

$$\lambda_1 \langle x_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \langle A x_1, x_2 \rangle$$
$$= \langle x_1, A x_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle$$
$$= \bar{\lambda_2} \langle x_1, x_2 \rangle$$
$$0 = \lambda_1 \langle x_1, x_2 \rangle - \lambda_2 \langle x_1, x_2 \rangle$$
$$0 = (\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle$$

Either
$$\lambda_1 = \lambda_2$$

or if $\lambda_1 \neq \lambda_2$, then $\langle x_1, x_2 \rangle = 0$
 $\Rightarrow x_1 \perp x_2$

Definition

An operator T in L(V) on a Pre-Hilbert space V is called self-adjoint if T $\langle v,w\rangle=\langle v,Tw\rangle$

Sometimes it's called a Hermitian Operator (on \mathbb{C}^n) or a Symmetric Operator (on \mathbb{R}^n).

Remarks:

Over \mathbb{C}^n , self adjoint operators are represented by Hermetian Matrices. Similarly. Over \mathbb{R}^n , self adjoint operators are represented by Symmetric Matrices.

Proposition

Let T in $\mathcal{L}(V)$ be self adjoint. Then, T has at least one eigen value and it's real value (holds both on \mathbb{C}^n and \mathbb{R}^n)

Proof(Sketch)

Let $n := \dim V$ and choose $v \neq 0$.

Consider the vectors $v, Tv, T^2v, \ldots, T^nv$. These vectors are linearly dependent $(n + 1 \text{ vectors}, \dim V = n)$. There exist coefficients a_0, a_1, \ldots, a_n .

So, vectors with coefficients are:

$$a_0v + a_1Tv + \ldots + a_nT^nv$$

Consider the polynomial with these coefficients:

$$P(x) = a_0 + a_1 x + \dots + a_n x^n = 0 = \underbrace{C(x^2 + b_1 x + c_1) \dots (x^n + b_m x + c_m)}_{\text{(quadratic terms)}} \times \underbrace{(x - \lambda_1) \dots (x - \lambda_m)}_{\text{(linear terms)}}$$

Replace x by T:

$$0 = a_0 + a_1 T v + \ldots + a_n T^n v = \underbrace{C(T^2 + b_1 T + c_1) \dots (T^n + b_m T + c_m)}_{\text{(quadratic terms)}} \times \underbrace{(T - \lambda_1 I) \dots (T - \lambda_m I)}_{\text{(linear terms)}} v$$

Now, we can show that the quadratic terms are invertible, and we are left with at least one linear factor:

$$0 = (T - \lambda_1 I) \dots (T - \lambda_n I) v$$

There needs to exist at least one *i* such that $(T - \lambda_i I)$ is not invertible. So $(T - \lambda_i I)v = 0$. This implies $Tv = \lambda_i v$. which means λ_i is an eigenvalue of *T*.

2 Spectral Theorem for Symmetric/ Hermitian Matrices

Theorem 1 A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable: there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ s.t.

$$\begin{split} \boldsymbol{A} &= \boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^{\top}, \boldsymbol{D} = \begin{bmatrix} \lambda_1 & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \lambda_n \end{bmatrix} \\ &= \sum_{i=1}^n \lambda_i \underbrace{\boldsymbol{q}_i \boldsymbol{q}_i^{\top}}_{\hookrightarrow \ rank-1 \ matrices} \end{split}$$

Theorem 2 A Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable: there exists a unitary matrix U and a diagonal matrix D. s.t.

$$A = U D \bar{U}^{\mathsf{T}}$$

The entries of D are real-valued.

3 Positive Definite Matrices

Definition 3 A matrix $A \in \mathbb{R}^{n \times n}$ is called a **positive definite** (PD) if $\forall x \in \mathbb{R}^n$,

$$x \neq 0$$
 $x^{+}Ax > 0$

For positive semi-definite (PSD) $\forall x \in \mathbb{R}^n \ x \neq 0, \quad x^\top A x \ge 0$

Definition 4 A matrix $A \in \mathbb{C}^{n \times n}$ is called a Gram matrix if there exists a set of vectors $v_1, \ldots, v_n \in \mathbb{C}^n$ such that $a_{ij} = \langle v_i, v_j \rangle$. Note: Gram matrices are Hermitian (Similarly on \mathbb{R}^{nan} , then Gram matrices are symmetric).

$$G = V^{\top}V, \quad V = \begin{bmatrix} 1 & 1 \\ V_1 & \ddots & V_n \\ 1 & 1 \end{bmatrix}$$
$$CV^{\top}$$

 \wedge Over \mathbb{C} , we have that $PD \Rightarrow$ self adjoint.

Over \mathbb{R} , this is **not** true!

 \Rightarrow there are matrices which are *PD* but not symmetric.

Example:

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
$$x^{\top}Ax = x_1^2 + x_2^2 > 0$$

 \rightarrow So A is PD but not symmetric

 \rightarrow over $\mathbb{C},$ the same matrix is not PD since $x_1^2+x_2^2$ can be negative!

Theorem 5 $A \in \mathbb{C}^{n \times n}$ Hermitian. Then equivalent:

- (i) A is PSD (PD)
- (ii) All eigenvalues of A are ≥ 0 (> 0)
- (iii) The mapping $\langle \cdot, \cdot \rangle_A : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ with

$$\langle x, y \rangle_A := \bar{y}^\top A x$$

satisfies all properties of an inner product except one: if $\langle x, x \rangle_A = 0$, this does not imply x = 0

(This mapping is an inner product)

(iv) A is a Gram matrix of n vectors which are not necessarily linearly independent (which are linearly independent).

$$a_{ij} = \langle x_i, x_j \rangle$$

4 Roots of PSD matrices

Theorem 6 Let $A \in \mathbb{R}^{n \times n}$ be symmetric, PSD. Then there exists a matrix $B \in \mathbb{R}^{n \times n}$, B is PSD such that $A = B^2$. Sometimes B is called the square root of A,

$$B = (A)^{1/2}$$

Proof: Spectral theorem \Rightarrow

$$A = UDU^{+}, D$$
 diagonal

 $PSD \Rightarrow \text{eigenvalues} \Rightarrow 0$

 $D = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n \end{bmatrix}, \lambda_i \ge 0$ $\sqrt{D} = \begin{bmatrix} \sqrt{\lambda_1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \sqrt{\lambda_n} \end{bmatrix}$

Define

and set

 $B := U \sqrt{D} U^\top$

This matrix satisfies the property that $B^2 = A$

5 Variational Characterization of Eigenvalues

Definition 7 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

$$R_A : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$$
$$x \mapsto \frac{x^T A x}{x^T x}$$

Proposition 8 Let A be symmetric, let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues and $v_1, v_2, ..., v_n$ the eigenvectors of A. Then:

$$\min_{x \in \mathbb{R}^n} R_A(x) = \min_{||x||=1} x^T A x = \lambda_1, \text{ attained at } x = v_1$$

$$\max_{x \in \mathbb{R}^n} R_A(x) = \max_{||x||=1} x^T A x = \lambda_n, \text{ attained at } x = v_n$$

Intuition:

Assume A is expressed in terms of the basis v_1, \ldots, v_n

$$A = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n \end{bmatrix}$$

Let y be a vector, also represented in the same basis.

$$egin{aligned} &\mathbf{y} = y_1 v_1 + y_2 v_2 + \dots + y_n v_n \ &\mathbf{y}^T A y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \end{aligned}$$

Among the vectors
$$\begin{pmatrix} 1\\0\\...\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\...\\0 \end{pmatrix}, ... \begin{pmatrix} 0\\...\\0\\1 \end{pmatrix}$$
, the smallest result of $y^T A y$ would be given by the vector $\begin{pmatrix} 1\\0\\...\\0 \end{pmatrix}$, (v_1) , and the value would be λ_1 .

More general proof (sketch):

Assume we start with the standard basis. Let $\mathbf{Q} = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | \end{pmatrix}$ be the basis transformation.

Observe: Q is orthogonal, we have

 $A = Q^T \Lambda Q$, where Λ is diagonal.

For a vector
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 in the original basis, we now consider $y := Q^T x$.

$$\begin{aligned} R_A(y) &= \frac{y^T A y}{y^T y} \\ &= \frac{(Q^T x)^T A (Q^T x)}{(Q^T x)^T (Q^T x)} \\ &= \frac{x^T Q Q^T \Lambda Q Q^T x}{x^T Q Q^T x} \text{ Note } : (Q^T x)^T = x^T Q \\ &= \frac{x^T \Lambda x}{x^T x} \text{ Note: Because } Q \text{ is orthogonal, } QQ^T = I \\ &= \frac{\lambda_1 x_1^2 + \dots + \lambda_n x_n^2}{||x||} \end{aligned}$$

$$\min_{||y||=1} R_A(y) = \min_{||x||=1} \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$$

Note: Q is orthogonal, which means norms are preserved

This minimum is attained for $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$, that is $y = Q^T x = v_1$, with value $\min_{||y||=1} R_A(y) = \lambda_1$

Proposition 9 Consider the problem

$$\min_{\substack{||x||=1\\x \perp v_1}} R(x).$$

The solution to this problem is $x = v_2, R(x) = \lambda_2$.

Intuition: Consider operator A restricted to the space $V_1^{\perp} := (span\{v_1\})^{\perp}$. We know that on this space, A is invariant and symmetric, so we can apply Rayleigh to this "smaller" space.

$$V_1^{\perp} = span\{v_2, v_3, \dots, v_n\}$$

If we apply Rayleigh to V_1^{\perp} , we get the solution λ_2, v_2 .

Theorem 10 (Min-Max Theorem):

Let $A \in \mathbb{R}^{n \times n}$ be symmetric, with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then

$$\lambda_{k} = \min_{\substack{Usubspace \\ dim U = k}} \max_{x \in U \setminus \{0\}} R_{A}(x)$$
$$= \max_{Usubspace} \min_{x \in U \setminus \{0\}} R_{A}(x)$$

$$= \max_{\substack{Usubspace \\ dimU=n-k+1}} \min_{x \in U \setminus \{0\}} R_A(x)$$

Intuition: for k=3,

Consider the subspace U, spanned by v_1, v_2, v_3 . As we saw before,

$$\max_{x \in U} R_A(x) = \lambda_3, \text{ attained by } v_3.$$

Consider another subspace U, spanned by v_9, v_{10}, v_{11} .

$$\max_{x \in U} R_A(x) = \lambda_{11}$$