1 Singular Value Decomposition

Proposition 1 Consider $A \in \mathbb{R}^{m x n}$ of rank r. Then we can write A in the form

$$
A=U \Sigma V^{T}
$$

where $U \in \mathbb{R}^{m x m}, V \in \mathbb{R}^{n x n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m x n}$ is diagonal and exactly r of the diagonal values $\sigma_{1}, \sigma_{2}, \ldots$ are non-zero.

Definition 2 Singular Value Decomposition (SVD) is a matrix factorization technique that decomposes a matrix into three simpler matrices, revealing the underlying structure and relationship with the orthogonal matrix.

$$
A=U \Sigma V^{T}
$$

Where U is a left orthogonal ($m \times m$) matrix and m is the number of rows in A, V^{T} is the transpose of a right orthogonal ($n x n$) matrix and n is the number of columns in A, and Σ is a ($m x n$) diagonal matrix with non-negative real numbers on its diagonal, called singular values.

Proof of Proposition 1: Consider a matrix $A \in \mathbb{R}^{m x n}$ with rank r. Now consider a matrix $B:=A^{T} A \in \mathbb{R}^{m x n}$, which is therefore symmetric and positive semi-definite (PSD).

$$
\begin{gathered}
\text { Symmetric: }\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A \\
P S D: x^{T} B x=<x, B x>=<x, A^{T} A x>=<A x, A x>=\|A x\|^{2} \geq 0
\end{gathered}
$$

Therefore, there exists an orthonormal basis of eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq$ 0.

Let $\Sigma \in \mathbb{R}^{m x n}$ be the diagonal matrix of singular values, σ_{i}, where $\sigma_{i}=\sqrt{\lambda_{i}}$. We know we can take the square root of the eigenvalues because PSD matrices are equivalently characterized as matrices with non-negative eigenvalues.
We can now construct a unit eigenvector r_{i} of matrix B as $r_{i}:=\frac{\left(A x_{i}\right)}{\sigma_{i}}$. Now define matrices U and V with columns of r_{i}, and x_{i}, respectively. Columns of $U \Sigma$ are given as $\sigma_{i} r_{i}=\sigma_{i} \frac{A x_{i}}{\sigma_{i}}=A x_{i}$. Multiply the columns of $U \Sigma$ by V^{T}. Consider that the rows of V^{T} are the x_{i} vectors; and if $i \neq j$, then $x_{i} \perp x_{j}$ and $\left\|x_{i}\right\|=1$. The terms consisting of i, j with $x_{i} \perp x_{j}$ cancel, and the terms with $i=j$ will equal 1.
What remains afterward will be matrix A, therefore proving that $A=U \Sigma V^{T}$.

2 Key Differences Between SVD and Eigendecomposition

Remark 3 SVD always exists, no matter how matrix A looks like.

Remark 4 Matrices U, V are orthogonal, which is not true of eigenvectors in general.

Remark 5 Singular values are always real and non-negative.

Remark 6 If $A \in \mathbb{R}^{n x n}$ is symmetric, then the $S V D$ is "nearly" the same as the eigenvalue decomposition. If $\left(\lambda_{i}, v_{i}\right)$ are the eigenvalue/eigenvector pairs of A, then $\left|\lambda_{i}\right|, v_{i}$ are the singular value / singular vector pairs of A. In particular, left-and-right singular vectors are the same.

Remark 7 Left-singular vectors of A are the eigenvectors of $A A^{T}$.

Remark 8 Right-singular vectors of A are the eigenvectors of $A^{T} A$.

Remark 9 Right-singular vectors of A are the eigenvectors of $A^{T} A$.

Remark $10 \lambda_{i} \neq 0$ is an eigenvalue of $A A^{T} \vee A^{T} A \Longleftrightarrow \sqrt{\lambda_{i}} \neq 0$ is a singular value of A.

3 Matrix Norms

Consider a matrix $A \in \mathbb{R}^{m \times n}$

Definition 11

$$
\|A\|_{\max }=\|A\|_{\infty}=\max _{i j}\left|a_{i j}\right|
$$

Definition 12

$$
\|A\|_{1}=\sum_{i, j}\left|a_{i j}\right|
$$

Definition 13 Frobenius Norm

$$
\begin{aligned}
\|A\|_{F} & =\sqrt{\sum_{i, j}\left|a_{i j}^{2}\right|}=\sqrt{\operatorname{tr}\left(A^{T} A\right)} \\
& =\sqrt{\sum \sigma_{i}^{2}} \quad \text { where } \sigma_{i} \text { are the singular values of } A .
\end{aligned}
$$

Definition 14 Operator norm/Spectral Norm

$$
\begin{aligned}
\|A\|_{2} & =\sigma_{\max }(A) \quad \text { where } \sigma_{\max } \text { isthelargestsingularvalue. } \\
& =\max _{x \neq 0} \frac{\|A x\|}{\|x\|} \quad\left[\text { where }\|A x\|,\|x\| \text { are Euclidean norm on vectors in } \mathbb{R}^{m}\right]
\end{aligned}
$$

4 Rank-k Approximations of Matrices

Definition 15 Consider a matrix $A=U \Sigma V^{T}$ withentries $\sigma_{1}, \sigma_{2}, \ldots$ sorted in decreasing order. We define a new matrix A_{k} as follows:

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T} \quad\left[u_{i} v_{i} i s \text { rank-1 matrix }\right]
$$

Proposition 16 Let B be any rank- k matrix $\in \mathbb{R}^{m \times n}$. Then:

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F}
$$

A_{k} is the best rank-k approximation (in Frobenius norm).

Proposition 17 For any matrix B of rank- $k, B \in \mathbb{R}^{m \times n}$,

$$
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2}
$$

where $\|\cdot\|_{2}$ denotes the operator norm. A_{k} is the best rank-k approximation (in operator norm)

5 Pseudo-Inverse of Matrix

Definition 18 For $A \in \mathbb{R}^{m \times n}$, a pseudo inverse of A is defined as the matrix $A^{\dagger} \in \mathbb{R}^{m \times n}$ which satisfies the following properties:
$\left.\begin{array}{l}\text { (i) } A A^{\dagger} A=A \\ \text { (ii) } \quad A^{\dagger} A A^{\dagger}=A^{\dagger}\end{array}\right\}$ "nearly inverse"
(iii) $\quad\left(A A^{\dagger}\right)^{T}=A A^{\dagger}$
(iv) $\left.\quad\left(A^{\dagger} A\right)^{T}=A^{\dagger} A\right\}$ symmetry

Intuition 19

$$
\text { - } A \text { is a projection from } \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{x 1}{x 2}
$$

- Cannot invert, obviously (inverting means reconstructing original)
- But I could "make up" a reconstruction: $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, R\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ 5\end{array}\right)$
- Now we have: $A R A=A \Longrightarrow A A^{\dagger} A=A$

Proposition 20 Let $A \in \mathbb{R}^{m x n}, A=U \Sigma V^{T}$ its $S V D$. Then: $A^{\dagger}=V \Sigma^{\dagger} U^{T}$ where $\Sigma^{\dagger} \in \mathbb{R}^{m x n}$.

$$
\Sigma_{i i}^{\dagger}=\left\{\begin{array}{ll}
\frac{1}{\Sigma_{i i}} & \text { if } \Sigma_{i i} \neq 0 \\
0 & \text { otherwise }
\end{array}, \Sigma=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
0 & & \sigma_{n}
\end{array}\right), \Sigma=\left(\begin{array}{ccc}
\frac{1}{\sigma_{1}} & & \\
& \ddots & \\
0 & & \frac{1}{\sigma_{n}}
\end{array}\right)\right.
$$

Intuition 21 Assume $A \in \mathbb{R}^{n x n}$, invertible, has eigendecomposition $A=U \Lambda U^{T}$. Then:

- All entries of $\operatorname{diag}(\Lambda)$ are $\neq 0$ (eigenvalues $\neq 0)$
- $A^{-1}=U \Lambda^{-1} U^{T}$ with $\Lambda=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right), \Lambda^{-1}=\left(\begin{array}{ccc}\frac{1}{\lambda_{1}} & & 0 \\ & \ddots & \\ 0 & & \frac{1}{\lambda_{n}}\end{array}\right)$

