CSE 840: Computational Foundations of Artificial Intelligence October 2, 2023

Lecture 9

Instructor: Vishnu Boddeti Scribe: Ayaan Shaik, Javen Zamojcin, Max Brombach

1 Singular Value Decomposition

Proposition 1 Consider A € R™*™ of rank r. Then we can write A in the form
A=UxvT

where U € R™*™ V€ R™™ are orthogonal matrices and X € R™*™ is diagonal and exactly r of the
diagonal values 01,02, ... are non-zero.

Definition 2 Singular Value Decomposition (SVD) is a matriz factorization technique that decomn-
poses a matrixz into three simpler matrices, revealing the underlying structure and relationship with

the orthogonal matriz.
A=UxvT

Where U is a left orthogonal (m x m) matriz and m is the number of rows in A, V' is the transpose
of a right orthogonal (n x n) matriz and n is the number of columns in A, and ¥ is a (m x n)
diagonal matriz with non-negative real numbers on its diagonal, called singular values.

Proof of Proposition 1: Consider a matrix A € R™*" with rank r. Now consider a matrix
B := AT A € R™*" which is therefore symmetric and positive semi-definite (PSD).

Symmetric : (ATA)T = AT(AT)T = AT A
PSD :2"Bx = <z,Bx> = <z, ATAz > = < Az, Az > = HA$||2 >0

Therefore, there exists an orthonormal basis of eigenvectors x1, xs, ..., T, with eigenvalues \1, Ao, ..., A\, >
0.

Let ¥ € R™*™ be the diagonal matrix of singular values, o;, where o; = v/\;. We know we can take
the square root of the eigenvalues because PSD matrices are equivalently characterized as matrices

with non-negative eigenvalues.

We can now construct a unit eigenvector r; of matrix B as r; := . Now define matrices U and

V' with columns of r;, and x;, respectively. Columns of UY are given as o;1; = 0; éf’“ = Aux;.
Multiply the columns of UX. by V7. Consider that the rows of V7 are the z; vectors; and if i # 7,

then z; Lz and ||z;|| = 1. The terms consisting of ¢, j with x; Lz; cancel, and the terms with i = j
will equal 1.
What remains afterward will be matrix A, therefore proving that A = USVT. O

2 Key Differences Between SVD and Eigendecomposition

Remark 3 SVD always exists, no matter how matriz A looks like.
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Remark 4 Matrices U,V are orthogonal, which is not true of eigenvectors in general.
Remark 5 Singular values are always real and non-negative.

Remark 6 If A € R™™" is symmetric, then the SVD is "nearly"” the same as the eigenvalue decom-
position. If (A\;,v;) are the eigenvalue/eigenvector pairs of A, then |N\;|,v; are the singular value /
singular vector pairs of A. In particular, left-and-right singular vectors are the same.

Remark 7 Left-singular vectors of A are the eigenvectors of AAT.
Remark 8 Right-singular vectors of A are the eigenvectors of AT A.
Remark 9 Right-singular vectors of A are the eigenvectors of AT A.

Remark 10 \; # 0 is an eigenvalue of AAT v AT A <= \/\; # 0 is a singular value of A.

3 Matrix Norms

Consider a matrix A € R™*"

Definition 11
||A||maz = ||A||oo = H%?Xmiﬂ

Definition 12

1AL = las
i

Definition 13 Frobenius Norm

1Allr = [>_la}j| = \/tr(ATA)
0,J
= \/Zaf where o; are the singular values of A.

Definition 14 Operator norm/Spectral Norm

[|All2 = 0maz(A)  where oparisthelargestsingularvalue.

]
= X
o [l

[ where ||Az||, ||z|| are Euclidean norm on vectors in R™]
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4 Rank-k Approximations of Matrices

Definition 15 Consider a matriz A = USV T withentrieso, o, . .. sorted in decreasing order. We
define a new matriz Ay as follows:

k
A = E aiuiviT [ wjv;is rank-1 matriz |
1=1

Proposition 16 Let B be any rank-k matric € R™*"™. Then:
A= Ayllr < ||A— BllF

Ay is the best rank-k approxzimation (in Frobenius norm).

Proposition 17 For any matriz B of rank-k, B € R™*",
|A = Akll2 < [|[A = Bl|2

where || - ||2 denotes the operator norm. Ay is the best rank-k approzimation (in operator norm)

5 Pseudo-Inverse of Matrix

Definition 18 For A € R™*", a pseudo inverse of A is defined as the matriz AT € R™*™ which
satisfies the following properties:

(/I/) AATA = A ” ; 2
(i) ATAAT = At nearly inverse
(i) (AAT)T = AAt

t
(ZU) (ATA)T _ ATA }Symme Y

€
Intuition 19 o A is a projection from R? = R%: A |z | = <i;>
x3

e Cannot invert, obviously (inverting means reconstructing original)

T

e But I could "make up" a reconstruction: R:R? — R3, R (il) = | 29
2

5

e Now we have: ARA=A — AATA=A

Proposition 20 Let A € R™*™ A =UXV7T its SVD. Then: At = VSTUT where BT € Rme#n,

L fs,#0 o 7
2l =4 B tr B = g ;Y=
0 otherwise ’

On
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Intuition 21 Assume A € R™", invertible, has eigendecomposition A = UAUT. Then:

o All entries of diag(A) are # 0 (eigenvalues # 0)
A 0 = 0
e ATl =UAUT with A = , A7t
0 An 0
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