Lecture 9

Instructor: Vishnu Boddeti

1 Singular Value Decomposition

Proposition 1 Consider $A \in \mathbb{R}^{mxn}$ of rank r. Then we can write A in the form

 $A = U \Sigma V^T$

where $U \in \mathbb{R}^{mxm}$, $V \in \mathbb{R}^{nxn}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{mxn}$ is diagonal and exactly r of the diagonal values $\sigma_1, \sigma_2, \ldots$ are non-zero.

Definition 2 Singular Value Decomposition (SVD) is a matrix factorization technique that decomposes a matrix into three simpler matrices, revealing the underlying structure and relationship with the orthogonal matrix.

 $A = U\Sigma V^T$

Where U is a left orthogonal $(m \ x \ m)$ matrix and m is the number of rows in A, V^T is the transpose of a right orthogonal $(n \ x \ n)$ matrix and n is the number of columns in A, and Σ is a $(m \ x \ n)$ diagonal matrix with non-negative real numbers on its diagonal, called singular values.

Proof of Proposition 1: Consider a matrix $A \in \mathbb{R}^{mxn}$ with rank r. Now consider a matrix $B := A^T A \in \mathbb{R}^{mxn}$, which is therefore symmetric and positive semi-definite (PSD).

$$Symmetric: (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$$
$$PSD: x^{T}Bx = \langle x, Bx \rangle = \langle x, A^{T}Ax \rangle = \langle Ax, Ax \rangle = ||Ax||^{2} \ge 0$$

Therefore, there exists an orthonormal basis of eigenvectors $x_1, x_2, ..., x_n$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n \ge 0$.

Let $\Sigma \in \mathbb{R}^{mxn}$ be the diagonal matrix of singular values, σ_i , where $\sigma_i = \sqrt{\lambda_i}$. We know we can take the square root of the eigenvalues because PSD matrices are equivalently characterized as matrices with non-negative eigenvalues.

We can now construct a unit eigenvector r_i of matrix B as $r_i := \frac{(Ax_i)}{\sigma_i}$. Now define matrices U and V with columns of r_i , and x_i , respectively. Columns of $U\Sigma$ are given as $\sigma_i r_i = \sigma_i \frac{Ax_i}{\sigma_i} = Ax_i$.

Multiply the columns of $U\Sigma$ by V^T . Consider that the rows of V^T are the x_i vectors; and if $i \neq j$, then $x_i \perp x_j$ and $||x_i|| = 1$. The terms consisting of i, j with $x_i \perp x_j$ cancel, and the terms with i = j will equal 1.

What remains afterward will be matrix A, therefore proving that $A = U\Sigma V^T$.

2 Key Differences Between SVD and Eigendecomposition

Remark 3 SVD always exists, no matter how matrix A looks like.

Remark 4 Matrices U, V are orthogonal, which is not true of eigenvectors in general.

Remark 5 Singular values are always real and non-negative.

Remark 6 If $A \in \mathbb{R}^{n \times n}$ is symmetric, then the SVD is "nearly" the same as the eigenvalue decomposition. If (λ_i, v_i) are the eigenvalue/eigenvector pairs of A, then $|\lambda_i|, v_i$ are the singular value / singular vector pairs of A. In particular, left-and-right singular vectors are the same.

Remark 7 Left-singular vectors of A are the eigenvectors of AA^T .

Remark 8 Right-singular vectors of A are the eigenvectors of $A^T A$.

Remark 9 Right-singular vectors of A are the eigenvectors of $A^T A$.

Remark 10 $\lambda_i \neq 0$ is an eigenvalue of $AA^T \lor A^T A \iff \sqrt{\lambda_i} \neq 0$ is a singular value of A.

3 Matrix Norms

Consider a matrix $A \in \mathbb{R}^{m \times n}$

Definition 11

$$||A||_{max} = ||A||_{\infty} = \max_{ij} |a_{ij}|$$

Definition 12

$$||A||_1 = \sum_{i,j} |a_{ij}|$$

Definition 13 Frobenius Norm

$$\begin{split} ||A||_F &= \sqrt{\sum_{i,j} |a_{ij}^2|} = \sqrt{tr(A^T A)} \\ &= \sqrt{\sum \sigma_i^2} \quad \text{where } \sigma_i \text{ are the singular values of } A. \end{split}$$

Definition 14 Operator norm/Spectral Norm

$$\begin{split} ||A||_2 &= \sigma_{max}(A) \quad where \; \sigma_{max} is the large st singular value. \\ &= \max_{x \neq 0} \frac{||Ax||}{||x||} \quad [\; where \; ||Ax||, ||x|| \; are \; Euclidean \; norm \; on \; vectors \; in \; \mathbb{R}^m] \end{split}$$

4 Rank-k Approximations of Matrices

Definition 15 Consider a matrix $A = U\Sigma V^T$ with $\sigma_1, \sigma_2, \ldots$ sorted in decreasing order. We define a new matrix A_k as follows:

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T \quad [\ u_i v_i \text{ is rank-1 matrix}\]$$

Proposition 16 Let B be any rank-k matrix $\in \mathbb{R}^{m \times n}$. Then:

$$||A - A_k||_F \le ||A - B||_F$$

 A_k is the best rank-k approximation (in Frobenius norm).

Proposition 17 For any matrix B of rank-k, $B \in \mathbb{R}^{m \times n}$,

$$||A - A_k||_2 \le ||A - B||_2$$

where $||\cdot||_2$ denotes the operator norm. A_k is the best rank-k approximation (in operator norm)

5 Pseudo-Inverse of Matrix

Definition 18 For $A \in \mathbb{R}^{m \times n}$, a pseudo inverse of A is defined as the matrix $A^{\dagger} \in \mathbb{R}^{m \times n}$ which satisfies the following properties:

- $\begin{array}{ll} (i) & AA^{\dagger}A = A \\ (ii) & A^{\dagger}AA^{\dagger} = A^{\dagger} \end{array} \right\}"nearly \ inverse"$
- $\begin{array}{ll} (iii) & \left(AA^{\dagger}\right)^{T} = AA^{\dagger} \\ (iv) & \left(A^{\dagger}A\right)^{T} = A^{\dagger}A \end{array} \right\} symmetry$

Intuition 19 • A is a projection from $\mathbb{R}^3 \to \mathbb{R}^2$: $A\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x1\\ x2 \end{pmatrix}$

- Cannot invert, obviously (inverting means reconstructing original)
- But I could "make up" a reconstruction: $R : \mathbb{R}^2 \to \mathbb{R}^3$, $R \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 5 \end{pmatrix}$
- Now we have: $ARA = A \implies AA^{\dagger}A = A$

Proposition 20 Let $A \in \mathbb{R}^{mxn}$, $A = U\Sigma V^T$ its SVD. Then: $A^{\dagger} = V\Sigma^{\dagger}U^T$ where $\Sigma^{\dagger} \in \mathbb{R}^{mxn}$.

$$\Sigma_{ii}^{\dagger} = \begin{cases} \frac{1}{\Sigma_{ii}} & \text{if } \Sigma_{ii} \neq 0\\ 0 & \text{otherwise} \end{cases}, \ \Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ 0 & & \sigma_n \end{pmatrix}, \ \Sigma = \begin{pmatrix} \frac{1}{\sigma_1} & & \\ & \ddots & \\ 0 & & \frac{1}{\sigma_n} \end{pmatrix}$$

Intuition 21 Assume $A \in \mathbb{R}^{nxn}$, invertible, has eigendecomposition $A = U\Lambda U^T$. Then:

• All entries of $diag(\Lambda)$ are $\neq 0$ (eigenvalues $\neq 0$)

•
$$A^{-1} = U\Lambda^{-1}U^T$$
 with $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$, $\Lambda^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\lambda_n} \end{pmatrix}$