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1 Singular Value Decomposition

Proposition 1 Consider A ∈ Rmxn of rank r. Then we can write A in the form

A = UΣV T

where U ∈ Rmxm, V ∈ Rnxn are orthogonal matrices and Σ ∈ Rmxn is diagonal and exactly r of the
diagonal values σ1, σ2, ... are non-zero.

Definition 2 Singular Value Decomposition (SVD) is a matrix factorization technique that decom-
poses a matrix into three simpler matrices, revealing the underlying structure and relationship with
the orthogonal matrix.

A = UΣV T

Where U is a left orthogonal (m x m) matrix and m is the number of rows in A, V T is the transpose
of a right orthogonal (n x n) matrix and n is the number of columns in A, and Σ is a (m x n)
diagonal matrix with non-negative real numbers on its diagonal, called singular values.

Proof of Proposition 1: Consider a matrix A ∈ Rmxn with rank r. Now consider a matrix
B := ATA ∈ Rmxn, which is therefore symmetric and positive semi-definite (PSD).

Symmetric : (ATA)T = AT (AT )T = ATA

PSD : xTBx = < x,Bx > = < x,ATAx > = < Ax,Ax > = ||Ax||2 ≥ 0

Therefore, there exists an orthonormal basis of eigenvectors x1, x2, ..., xn with eigenvalues λ1, λ2, ..., λn ≥
0.
Let Σ ∈ Rmxn be the diagonal matrix of singular values, σi, where σi =

√
λi. We know we can take

the square root of the eigenvalues because PSD matrices are equivalently characterized as matrices
with non-negative eigenvalues.
We can now construct a unit eigenvector ri of matrix B as ri :=

(Axi)
σi

. Now define matrices U and
V with columns of ri, and xi, respectively. Columns of UΣ are given as σiri = σi

Axi

σi
= Axi.

Multiply the columns of UΣ by V T . Consider that the rows of V T are the xi vectors; and if i ̸= j,
then xi⊥xj and ||xi|| = 1. The terms consisting of i, j with xi⊥xj cancel, and the terms with i = j
will equal 1.
What remains afterward will be matrix A, therefore proving that A = UΣV T . □

2 Key Differences Between SVD and Eigendecomposition

Remark 3 SVD always exists, no matter how matrix A looks like.
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Remark 4 Matrices U, V are orthogonal, which is not true of eigenvectors in general.

Remark 5 Singular values are always real and non-negative.

Remark 6 If A ∈ Rnxn is symmetric, then the SVD is "nearly" the same as the eigenvalue decom-
position. If (λi, vi) are the eigenvalue/eigenvector pairs of A, then |λi|, vi are the singular value /
singular vector pairs of A. In particular, left-and-right singular vectors are the same.

Remark 7 Left-singular vectors of A are the eigenvectors of AAT .

Remark 8 Right-singular vectors of A are the eigenvectors of ATA.

Remark 9 Right-singular vectors of A are the eigenvectors of ATA.

Remark 10 λi ̸= 0 is an eigenvalue of AAT ∨ATA ⇐⇒
√
λi ̸= 0 is a singular value of A.

3 Matrix Norms

Consider a matrix A ∈ Rm×n

Definition 11
||A||max = ||A||∞ = max

ij
|aij |

Definition 12
||A||1 =

∑
i,j

|aij |

Definition 13 Frobenius Norm

||A||F =

√∑
i,j

|a2ij | =
√
tr(ATA)

=
√∑

σ2
i where σi are the singular values of A.

Definition 14 Operator norm/Spectral Norm

||A||2 = σmax(A) where σmaxisthelargestsingularvalue.

= max
x ̸=0

||Ax||
||x||

[ where ||Ax||, ||x|| are Euclidean norm on vectors in Rm]
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4 Rank-k Approximations of Matrices

Definition 15 Consider a matrix A = UΣV Twithentriesσ1, σ2, . . . sorted in decreasing order. We
define a new matrix Ak as follows:

Ak =

k∑
i=1

σiuiv
T
i [ uiviis rank-1 matrix ]

Proposition 16 Let B be any rank-k matrix ∈ Rm×n. Then:

||A−Ak||F ≤ ||A−B||F

Ak is the best rank-k approximation (in Frobenius norm).

Proposition 17 For any matrix B of rank-k, B ∈ Rm×n,

||A−Ak||2 ≤ ||A−B||2

where || · ||2 denotes the operator norm. Ak is the best rank-k approximation (in operator norm)

5 Pseudo-Inverse of Matrix

Definition 18 For A ∈ Rm×n, a pseudo inverse of A is defined as the matrix A† ∈ Rm×n which
satisfies the following properties:

(i) AA†A = A
(ii) A†AA† = A†

}
”nearly inverse”

(iii) (AA†)
T
= AA†

(iv) (A†A)
T
= A†A

}
symmetry

Intuition 19 • A is a projection from R3 → R2: A

x1

x2

x3

 =

(
x1
x2

)
• Cannot invert, obviously (inverting means reconstructing original)

• But I could "make up" a reconstruction: R : R2 → R3, R
(
x1

x2

)
=

x1

x2

5


• Now we have: ARA = A =⇒ AA†A = A

Proposition 20 Let A ∈ Rmxn, A = UΣV T its SVD. Then: A† = V Σ†UT where Σ† ∈ Rmxn.

Σ†
ii =

{
1

Σii
if Σii ̸= 0

0 otherwise
, Σ =

σ1

. . .
0 σn

, Σ =


1
σ1

. . .
0 1

σn


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Intuition 21 Assume A ∈ Rnxn, invertible, has eigendecomposition A = UΛUT . Then:

• All entries of diag(Λ) are ̸= 0 (eigenvalues ̸= 0)

• A−1 = UΛ−1UT with Λ =

λ1 0
. . .

0 λn

, Λ−1 =


1
λ1

0

. . .
0 1

λn



9-4


