
CSE 840: Computational Foundations of Artificial Intelligence March 19, 2025

Higher-Order Derivatives, Minima, Maxima, Saddle Points, Matrix Calculus

Instructor: Vishnu Boddeti Scribes: Tolu Oshin and Roshan Atluri

1 Higher Order Derivatives

Consider f : Rn → R, assume it is differentiable, so all partial derivatives ∂f
∂xi

: Rn → R exist.

If this function is differentiable, we can take its derivative:

∂

∂xi

(
∂f

∂xj

)
=

∂2f

∂xi∂xj

These are called second order partial derivatives.

Warning: In general, we cannot change the order of derivatives:

∂2f

∂xi∂xj
̸= ∂2f

∂xj∂xi

Example: Let f(x, y) = x·y3

x2+y2

∇f(x, y) =

(
y3(y2 − x2)

(x2 + y2)2
,
xy2(3x2 + y2)

(x2 + y2)2

)
Have:

∂f

∂x
(0, y) = y ∀y ,

∂

∂y

(
∂f

∂x

)
= 1

∂f

∂y
(x, 0) = 0 ∀x ,

∂

∂x

(
∂f

∂y

)
= 0

Definition 1 We say that f : Rn → R is continuously differentiable if all partial derivatives exist
and are continuous.

We say that f is twice continuously differentiable if f is continuously differentiable and all its partial
derivatives ∂f

∂xi
are again continuously differentiable.

Analogously: k-times continuously differentiable.

15-1



Notation:
Ck(Rn,Rm) = {f : Rn → Rm | k times continuously differentiable}

C∞(Rn,Rm) = {f : Rn → Rm |∞ often continuously differentiable}

Theorem 2 (Schwarz) Assume that f is twice continuously differentiable. Then we can exchange
the order in which we take partial derivatives:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Analogously: k-times continuously differentiable implies we can exchange the order of the first k
partial derivatives.

Warning: Caution about derivatives:

f : Rn → R (function)

∇f : Rn → Rn (first derivative: n partial derivatives ,
∂f

∂xi
)

Hf : Rn → Rn×n (second derivative: n2 partial derivatives,
∂2f

∂xi∂xj
)

Definition 3 Let f : Rn → R, then we define the Hessian of f at point x by:

(Hf)ij(x) :=
∂2f(x)

∂xi∂xj
, i, j = 1, 2, . . . , n

Hf(x) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2
n



2 Minima/Maxima

Definition 4 Let f : Rn → R be differentiable. If ∇f(x) = 0, then we call x a critical point.

f has a local minimum at x0 if there exists ε > 0 such that

∀x ∈ Bε(x0) : f(x) ≥ f(x0)

f has a strict local minimum at x0 if there exists ε > 0 such that

∀x ∈ Bε(x0) : f(x) > f(x0)

15-2



Figure 1: Strict local vs local minimums

f has a local maximum (respectively, a strict local maximum) at x0 if

∀x ∈ Bε(x0) : f(x) ≤ f(x0) (respectively f(x) < f(x0))

If f is differentiable and x0 is a critical point that is neither a local minimum nor a local maximum,
we call it a saddle point.

Figure 2: Examples of saddle points in R2 and R3

f has a global minimum at x0 if
∀x : f(x) ≥ f(x0)

15-3



Figure 3: Global vs. local minimums

Intuition: How can we identify which type of point we have? In R:

• Local minimum at x0:
f ′(x0) = 0, f ′′(x0) > 0

• Local maximum at x0:
f ′(x0) = 0, f ′′(x0) < 0

15-4



• Saddle point at x0:
f ′(x0) = 0, f ′′(x0) = 0

Theorem 5 Let f : Rn → R, with f ∈ C2(Rn). Assume that x0 is a critical point, i.e., ∇f(x0) = 0.
Then:

(i) If x0 is a local minimum (respectively, maximum), then the Hessian Hf(x0) is positive semi-
definite (respectively, negative semi-definite).

(ii) If Hf(x0) is positive definite (respectively, negative definite), then x0 is a strict local minimum
(respectively, maximum). If Hf(x0) is indefinite, then x0 is a saddle point.

15-5



3 Matrix/Vector Calculus

Figure 4: Linear Least Squares in R2

Example: Linear least squares
f : Rn → R, ŷ(ω) = Aω

where:

- ŷ is the predicted output

- A is the matrix of input data

- ω is the weight vector (parameters we want to find)

The function:
f(ω) = ∥y − ŷ(ω)∥22 = ∥y −Aω∥22

measures how good the prediction is using parameters ω. We want to minimize f(ω), so we need to
look at the gradient:

∇f : Rn → Rn

Compute Gradient:

We write out f(ω) in expanded form:

f


ω1

...
ωn


 =

n∑
j=1

(
yj −

n∑
k=1

ajkωk

)2

Then the partial derivative with respect to ωi is:

∂f

∂ωi
=

n∑
j=1

(−aji) · 2 ·

(
yj −

n∑
k=1

ajkωk

)

15-6



This simplifies to:
∂f

∂ωi
= −2

n∑
j=1

aji((y −Aω)j) =
(
−2AT (y −Aω)

)
i

So the full gradient is:
∇f(ω) = −2AT (y −Aω)

Intuition: The matrix case is similar in "syntax" to the 1-dimensional case:

f(ω) = (y − aω)2, f ′(ω) = −2a(y − aω)

Matrix-vector calculus: Lookup table for gradients of common functions

f : Rn → R

• f(x) = a⊤x =< a, x > (a ∈ Rn)
∂f

∂x
= a ∈ Rn

• f(x) = x⊤Ax (A ∈ Rn×n)
∂f

∂x
= (A+A⊤)x ∈ Rn

f : Rn×m → R

• f(X) = a⊤Xb (a ∈ Rn, b ∈ Rm)

∂f

∂X
= ab⊤ ∈ Rn×m

• f(X) = a⊤X⊤CXb (a, b ∈ Rm, C ∈ Rn×n)

∂f

∂X
= C⊤Xab+ CXba⊤

• f(X) = tr(X)
∂f

∂X
= I

• f(X) = tr(AX)
∂f

∂X
= A

• f(X) = tr(X⊤AX)
∂f

∂X
= (A+A⊤)X

• f(X) = det(X)
∂f

∂X
= det(X) · (X⊤)−1

∂ det

∂xsr
= det(X) ·

(
X−1

)
rs

15-7



f : Rn×m → Rn×m (inverse)

• f(A) = A−1, fij :=
(
A−1

)
ij

∂fij
∂auv

= − (aiu)
−1

(avj)
−1

4 Applications of Lecture Concepts in Machine Learning

4.1 Higher-order derivatives

Higher-order derivatives are used in some more advanced machine learning methods. While gradi-
ents (first-order derivatives) are used in most optimization algorithms, higher-order derivatives give
more information about the shape of the loss function. This can help with better optimization,
understanding generalization, and tuning hyperparameters.

4.1.1 Second-Order Optimization

Second-order methods use the Hessian matrix, which contains all the second derivatives of the loss
function with respect to the model parameters. One example is Newton’s method, which updates
parameters like this:

x(k) = x(k−1) −
(
∇2f(x(k−1))

)−1

∇f(x(k−1))

where, ∇2f is the Hessian and ∇f is the gradient [1]. This update can lead to much faster conver-
gence compared to gradient descent, however, it can diverge [2]. However, computing and inverting
the Hessian is expensive for large models, so people use approximations. A common example of this
is the BFGS method, which utilizes an approximate inverse Hessian.

4.1.2 Sharpness and Generalization

Higher-order derivatives can also be used to analyze how well a model will generalize. One idea is
to look at how “sharp” or “flat” a minimum is. This is done by looking at the eigenvalues of the
Hessian:

• Sharp minima (large eigenvalues): usually don’t generalize well.

• Flat minima (small eigenvalues): tend to generalize better.

Research shows that models trained with large batch sizes often converge to sharper minima, which
may hurt generalization [3]. Techniques like using smaller batch sizes or adding regularization can
help find flatter minima and thus improve the performance of the model on new datasets.

15-8



4.2 Matrix/Vector Calculus

4.2.1 Backpropogation

Matrix and vector calculus play a central role in many core machine learning algorithms, and back-
propogation is an important example of an appplication of this. Backpropagation is the algorithm
used to compute gradients of the loss function with respect to each parameter in a neural network.
It is an application of the multivariable chain rule in matrix and vector form.

Consider a simple feedforward neural network layer:

z = Wx+ b, a = σ(z)

where x is the input vector, W is the weight matrix, b is the bias vector, σ is an activation function,
and a is the output of the layer.

To update W during training, we need to compute the partial derivative of the loss L with respect
to W :

∂L

∂W
=

∂L

∂a
· ∂a
∂z

· ∂z

∂W

This is a direct application of the chain rule for functions composed of matrix operations. In practice,
modern deep learning libraries like PyTorch and TensorFlow use automatic differentiation, which
internally applies these matrix calculus rules to compute gradients efficiently.

Backpropagation generalizes to deep networks by recursively applying the chain rule layer by layer,
from the output back to the input.

References
[1] Ryan Tibshirani. Lecture 14: Newton’s Method. Mar. 2015. url: https://www.stat.cmu.edu/

~ryantibs/convexopt-S15/scribes/14-newton-scribed.pdf.

[2] Kilian Weinberger. Gradient Descent (and Beyond). url: https://www.cs.cornell.edu/
courses/cs4780/2018fa/lectures/lecturenote07.html.

[3] Nitish Shirish Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and
Sharp Minima. 2017. arXiv: 1609.04836 [cs.LG]. url: https://arxiv.org/abs/1609.04836.

15-9

https://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/14-newton-scribed.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt-S15/scribes/14-newton-scribed.pdf
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836

	Higher Order Derivatives
	Minima/Maxima
	Matrix/Vector Calculus
	Applications of Lecture Concepts in Machine Learning
	Higher-order derivatives
	Second-Order Optimization
	Sharpness and Generalization

	Matrix/Vector Calculus
	Backpropogation



