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1 Introduction

This lecture dives into probability measures, their mathematical foundations, and key examples.

1.1 Basic Definitions

Definition 1 (Probability Measure) A probability measure involves:

• An abstract space Ω (the sample space)

• A corresponding σ-algebra A containing measurable events

The σ-algebra A must satisfy:

• Closure under complements: If A ∈ A, then Ac ∈ A

• Closure under countable unions: If {Ai}∞i=1 ⊆ A, then
⋃∞

i=1 Ai ∈ A

Definition 2 (Measure) A measure µ is a function µ : A → [0,∞] that is countably additive. For
any sequence {Ai}∞i=1 of pairwise disjoint sets:

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

Definition 3 (Probability Space) The triple (Ω,A, P ) constitutes a probability space when:

• P (Ω) = 1

• P : A → [0, 1] is a probability measure

2 Examples of Probability Measures

2.1 Discrete Probability Measures

Single Die:

• Sample space: Ω = {1, 2, 3, 4, 5, 6}
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• σ-algebra: A = P(Ω)

• Probability measure: P ({i}) = 1
6 for each i ∈ Ω

Two Dice:

• Sample space: Ω = {(i, j) : 1 ≤ i, j ≤ 6}

• σ-algebra: A = P(Ω)

• Probability measure: P ({(i, j)}) = 1
36 for each (i, j) ∈ Ω

2.2 Continuous Probability Measures

Normal Distribution

• Sample space: Ω = R

• σ-algebra: Borel σ-algebra B(R)

• Probability density function:

fX(x|µ, σ) = 1

σ
√
2π

e−
(x−µ)2

2σ2

• Probability measure: For A ∈ B(R),

P (A) =

∫
A

fX(x|µ, σ) dx

Figure 1: Fig.1 - Normal distribution

3 Types of Probability Measures

3.1 Discrete Measures

Definition 4 (Discrete Measure) A discrete measure on countable space Ω = {x1, x2, . . .} with
A = P(Ω) satisfies:
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Figure 2: Fig.2 - Normal distribution Integration

• P ({xi}) = pi with 0 ≤ pi ≤ 1

•
∑∞

i=1 pi = 1

For any A ∈ A:
P (A) =

∑
{i|xi∈A}

pi

Coin Toss: Ω = {H,T} with P ({H}) = p and P ({T}) = 1− p

3.2 Dirac Measures

Definition 5 (Dirac Measure) For x ∈ R, the Dirac measure δx on (R,B(R)) is:

δx(A) =

{
1 if x ∈ A

0 otherwise

Proposition 6 Any discrete measure on R can be expressed as a sum of Dirac measures:

P =

n∑
i=1

piδxi

The die measure from Example 2.1 can be written as:

P =
1

6
(δ1 + δ2 + · · ·+ δ6)
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Figure 3: Fig.3 - Dirac Measure Figure

4 Probability Measures with Density Functions

Definition 7 (Measure with Density) In the context of the measure space (R,B(R), λ), where
λ is the Lebesgue measure, a measurable function f : [0,∞] satisfying:∫

R
dλ = 1 which is

∫
A

f(x)dx = 1

defines a probability measure γ on Rn via:

γ(A) =

∫
A

f(x)dx for all A ∈ A

γ is the probability measure on (Rn,B(Rn)) with density f. We denote this relationship as γ = fλ.

Remark 8 Not all probability measures on (Rn,B(Rn)) admit density functions. For example:

• The Dirac measure δx cannot be expressed as δx = fλ for any f

• Discrete measures like
∑n

i=1 piδxi
lack density functions

5 Absolute Continuity of Measures

Definition 9 (Absolute Continuity) A probability measure γ on (Rn,B(Rn)) is absolutely con-
tinuous with respect to µ (Rn,B(Rn)) if for every µ-null set is also a γ-null set : ∀ B ∈ B(Rn) :
if µ(B) = 0 then γ(B) = 0

µ(A) = 0 =⇒ γ(A) = 0 ∀A ∈ B(Rn)

Notation; γ << µ
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Figure 4: Fig.4 - Integral of continuous distribution

6 Radon-Nikodym Theorem

Theorem 10 (Radon-Nikodym) For σ-finite measures µ and γ on (Rn,B(Rn)), the following
are equivalent:

1. γ has a density with respect to µ (i.e., ∃f measurable with γ(A) =
∫
A
fdµ)

2. γ ≪ µ : γ is absolutely continuous with respect to µ

If γ ≪ µ, Then ∃ϕ such that, γ(A) =
∫
A
ϕdµ Then, ϕ exists and is unique.

6.1 Proof:

Step 1: Define the Set of Dominating Functions

Define the set G of all measurable functions g : X → [0,∞) satisfying∫
A

g dµ ≤ γ(A) ∀A ∈ B.

• G is non-empty because the zero function g ≡ 0 belongs to G.

• If g1, g2 ∈ G, then max(g1, g2) ∈ G since for any A, we can split A into A1 = {g1 ≥ g2} and
A2 = {g1 < g2}, leading to ∫

A

max(g1, g2) dµ ≤ γ(A).

Step 2: Define the Supremum and Construct a Maximizing Sequence

Define
X = sup

g∈G

∫
X

g dµ.
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Since γ is σ-finite, we have X < ∞. Choose a sequence {gn} ⊂ G such that

lim
n→∞

∫
X

gn dµ = X.

Define the increasing sequence
fn = max(g1, . . . , gn),

which satisfies fn ∈ G and limn→∞
∫
X
fn dµ = X by construction.

Step 3: Construct the Density Function

Define
f = sup

n
gn.

By the monotone convergence theorem,∫
A

f dµ = sup
n

∫
A

gn dµ ≤ γ(A) ∀A ∈ B.

However, since fn ∈ G and
∫
X
fndµ approaches the supremum X, we conclude∫

A

f dµ = γ(A),

ensuring f is the required Radon–Nikodym derivative.

Step 4: Uniqueness

Suppose there exist two such functions f1 and f2. Then∫
A

(f1 − f2) dµ = 0 ∀A ∈ B.

Let A = {f1 > f2}. Then µ(A) = 0 since
∫
A
f1 dµ =

∫
A
f2 dµ. Similarly, µ({f2 > f1}) = 0, implying

f1 = f2.

Thus, the function f is unique up to sets of measure zero, completing the proof.

7 Bertrand paradox

Probability that a random chord exceeds
√
3 Consider the unit circle and the length of a random

chord. The probability that the chord length L >
√
3 depends on how we define "random":

1. Uniform endpoint method (Probability = 1/3): Fix one endpoint and choose the other
uniformly. The chord length exceeds

√
3 when the angle θ ∈ (2π/3, 4π/3).

2. Uniform radius method (Probability = 1/2): Choose a random radius and a point on
it uniformly for the chord. The condition holds when the distance d < 1/2 from center.

3. Uniform midpoint method (Probability = 1/4): Choose the midpoint uniformly in the
disk. The condition holds when the midpoint lies in a circle of radius 1/2.
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We calculate each case:

1. Endpoint method:

P (L >
√
3) = P (cos θ < −1/2) =

4π/3− 2π/3

2π
=

1

3

2. Radius method: The length condition becomes 2
√
1− d2 >

√
3 ⇒ d < 1/2. Thus:

P =
1/2

1
=

1

2

3. Midpoint method: The area where L >
√
3 is a circle of radius 1/2:

P =
π(1/2)2

π(1)2
=

1

4

Discussion

This example illustrates the Bertrand paradox, showing how probability results depend critically
on the the selected defined sample space. The different probabilities (1/2, 1/3, 1/4) correspond to
different natural σ-algebras and measures on the space of chords.

8 Applications in Artificial Intelligence

Probability measures play a crucial role in AI, particularly in probabilistic modeling, Bayesian
inference, and deep learning. Many AI systems rely on probability distributions to model uncertainty
and make informed decisions.

Fact: Gaussian Processes in Machine Learning: Gaussian Processes (GPs) leverage proba-
bility measures to define distributions over functions. This enables AI models to perform regression
and classification tasks with built-in uncertainty. GPs are widely used in Bayesian optimization,
reinforcement learning, and time-series forecasting.
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