CSE 840: Computational Foundations of Artificial Intelligence March 31, 2025

Bayes’ Theorem, Independence, & Discrete Statistical Measures
Instructor: Vishnu Boddeti Scribe: Molly Thornber

1 Bayes’ Theorem

1.1 Law of Total Probability
Let Bi, Bs, ..., By be a disjoint partition of Q with B; € A for all i and A € A. Then:

k
P(A) =) P(A|B)- P (B)

k
=Y P(ANB;)

Example 1.1.1: Multiple Coin Tosses

Consider tossing a fair coin twice (and let order matter). Let 0 represent getting heads and 1
represent getting tails on a given toss. Intuitively, there are four possible outcomes, represented
by the set of ordered tuples Q2 = H?Zl {0, 1} ={(0, 0), (0, 1), (1, 0), (1, 1)}.

Let the event A = {(0, 1), (1, 1)}, i.e. getting tails on the second toss.

We can define By, ..., By as any disjoint partition of €2, so for intuition’s sake, we can use a
partition based on the result of the first toss: By = {(0, 0), (0, 1)} and By = {(1, 0), (1, 1)}.
Since B; U By = Q and By N By = (), this is a disjoint partition.

Finally, since the coin is fair, define P such that each outcome in € is equally likely (probability
equal to § = 0.25).

What is the probability of A?

P (4) P(A[B;)- P(B)

I
.M“’

&
Il
—

P(ANB;)

I
-
L

{(0, 1), (1, )} n{(0, 0), (0, }) + P({(0, 1), (1, )} n{(1, 0), (1, 1)})
{0, D)) + P({(1, D})
5+0.25

I
R
N~ —~

I
o o
o

Intuitively, we know the probability of getting heads on the second toss is equal to 0.5, so this
checks out.
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1.2 Bayes’ Formula

P(A[Bi)- P(Bi)

P(&JAV:Zjﬂ;qu&)JﬂBH

_ P(ANB)
T T PA)

Example 1.2.1: COVID Testing

Let COVID status be represented by C' = {+¢, —c} and test result be represented by T =
{+t, —t}.

Assume that:

e 1% of all people have COVID P (4¢) =0.01
e 90% of people with COVID test positive (true positive) P(+t| +¢)=0.90
o 8% of people without COVID test positive (false positive) P(+t| —¢)=0.08

Given that a person tested positive, what is the probability that they have COVID?

P(+t] +¢)- P(+c)
P(+t| +¢)- P(+c)+ P(+t| —¢)- P(—c)

- 0.9-0.01
~0.9-0.01 4+ 0.08-0.99

~ 10%

P(+c| +t) =

2 Independence

2.1 Independence of Events & Families of Events

Definition 1 Consider a probability space (2, A, P).
Two events A and B are called independent (A 1L B) if:
P(AnB)=P(A) - P(B)

A family of events (A;);c; is called (mutually) independent if for all finite subsets J C I we have:

P(ﬂ&)HPMQ

ieJ ieJ

A family of events (A;);c; is called pairwise independent if Vi, j € I:
P(A;NA;)=P(A;)-P(A))
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Note that pairwise independence does not imply independence, but independence does imply
pairwise independence:

pairwise independence ﬁ independence

Observation 2 For two events A and B,

AL B & P(A|B)=P(A)

Example 2.1.1: Coin Tosses & Independence

Consider the same probability space as Example

First, let events A and B represent getting tails on the first and second flips, respectively, of
the fair coin. Based on the probability space, we know that P (A) = P (B) = 2 = 0.5 and that
P(ANB) =1 =0.25.

We can show that A and B are independent:

P(A)-P(B)=05-05=025=P(ANDB)

Now, consider a third variable C, representing the event in which exactly one of the two coin
tosses was tails (i.e. C = A® B). Now, we have a new event space:

Q=1{(0,0,0), (0,1,1), (1,0, 1), (1,1, 0)}

We can show that the family of events X = {A, B, C'} is pairwise independent:

P(A)-P(B)=0.5-05=0.25 =P(ANB) =025
P(A)-P(C)=05-0.5=025 —P(ANC) =025
P(B)-P(C)=05-05=0.25 —P(BNC)=0.25

We can also show that this family, X, is not independent:

P(A)-P(B)-P(C)=0.5-0.5-0.5=0.125
P(ANnBNC)=0

P(A)-P(B)-P(C)#P(ANBNC)

2.2 Independence of Random Variables

Definition 3 Two random variables X : Q@ — Q1 and Y : Q — Qo are called independent (X 1L
Y ) if their induced o-algebras o (X) and o (Y') are independent:

VAeo(X),Beo(Y): P(ANB)=P(A) P(B)
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2.3 Independence: Key Concepts

e Probability:

— Central Limit Theorem (CLT): for independent random variables { X7, ..., X}, the sam-
ple means will converge to the expected population mean as n — co

— Addition of random variables: addition of independent random variables holds certain
properties such as
* E(X4+Y)=E(X)+ E(Y)
* Var (X +Y) = Var (X) 4+ Var (Y)

e Algorithmic fairness/invariance: fairness can be achieved by enforcing g 1 S while learn-
ing for some predicted label ¥ and demographic variable S

e Learning theory: proving that an algorithm learns the correct prediction, converges at a
certain rate, etc. often requires the assumption that the training samples are independent

3 Expectation (Discrete Case)

3.1 Expectation

Definition 4 Let (2, A, P) be a probability space, S C R be at most countable, and X : Q — S be
a discrete random variable (i.e. image X () is at most countable).

If Y cglrl- P(X =17) < oo, then
E(X):=) r-P(X=r)
res
is called the expectation of X.

Note: May also be written as EX, EX, or E(X)

Note: Equivalent to the weighted mean of the possible values of X, or the expected mean of X

Example 3.1.1: Coin Toss & Expectation

Consider tossing one coin. The sample space is 2 = {HEADS, TAILS} and the event space is
A =P (Q) (a power series). We can define a variable 0 < p < 1 such that P (HEADS) = p and
P (tALs) = 1 — p. Finally, we can define X : Q — {0, 1} such that HEADS — 0, TAILS — 1.
Then

E(X)=0-P(X=0)4+1-P(X =1)
=0- P (HEADS) + 1 - P (TAILS)
=0-p+1-(1-p)
=1-p
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Example 3.1.2: Classifier Error

Let ¥ = f (z) where f is a classifier, z is the input, and ¥ is the classifier output. Let y be the
target output. Then the classification error can be calculated using

e=G-1)°=(f(2) -y

We can minimize error using
mfin Ex (e)

Example 3.1.3: Lists of Numbers (Expectation)

Let L1 and Lo be list of 10 numbers each:
Li=[1,223 33,4, 4,4, 4]
Ly=11,1,2,2,3,3,4,4,5, 5]
Let X be a random variable representing the value of an element chosen randomly from L.

Then

E(X)=1-P(X=1)+2-P(X=2)4+3-P(X=3)+4-P(X =4)

1 2 3 4
=l +2 53 5t g
=0.1+04409+16

=3

Let Y be a random variable representing the value of an element chosen randomly from Ls.
Then

EY)=1-PY=1)4+2-PY =2)+3-P(Y=3)+4-P(Y=4)+5-P(Y =5)
:1.£+2.3+3.3+4.2+5.3

10 10 10 10 10
=024+04+06+08+1.0

=3

3.2 Centered Random Variables

Definition 5 A random variable X is called centered if

E(X)=0
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3.3 Properties of Expectation
Let X and Y be random variables.
¢ Independence & expectation:
XU1Y = EX'Y)=EX)-E(Y)
e Linearity: (for a, b € R)
E(a-X+b-Y)=a-E(X)+b-E(Y)

E(a-X+b)=a-E(X)+0b
E(a)=a

4 Variance, Covariance, & Correlation (Discrete Case)

Let X, Y : (2, A, P) — R be discrete random variables with E (X?) < co and E (Y?) < o0

4.1 Variance

Definition 6 The variance of X is defined as

Var (X) == E ((X .y (X))2)

Definition 7 The standard deviation of X is defined as
ox = +/Var (X)

Example 4.1.1: Lists of Numbers (Variance)

Consider random variables X and Y as defined in B.1.3

The variance and standard deviation of X are
Var (X) = E ((X —E (X))Q)

:E(X2—2~X-E(X)+E(X)2)

BE(X )—2 E(X)*+E(X)?
B(X?) -
1 3 4

12. 92~ 2.2 2. 92
( 07" 10+3 0t )
=014+08+27+64-9
=1

ox =4/ Var (X)

=v1=1
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The variance and standard deviation of Y are

Var (V) = E ((Y _E (Y))2)

~E()- Em?

2
= — 2y et 2 2 g
< 10‘L TR TR TV 10)
=02+0841.84+32+5-9
=2
oy =+/Var (Y)
=2

4.2 Covariance

Definition 8 The covariance of X and Y is defined as

Cov (X, Y):=E((X - E (X)) (Y - E(Y)))

Example 4.2.1: Lists of Numbers (Covariance)

Consider random variables X and Y as defined in B.1.3]

The covariance of X and Y is

Cov (X, Y)=E((X - E(X))- (Y - E(Y)))
:E(X Y-X-E(Y)-Y -E(X)+E(X)-E(Y))
—E(X-Y)-2-E(X)-E(Y)+E(X) E(Y)
=E(X-Y)-E(X)-E(Y)
:( 110+4 %—FG TRk E+16 1—0+20 120)—3~3
=01+02+04+06+18+32+40-9
=13

4.3 Correlation

Definition 9 The correlation coefficient between X and Y is defined as



Definition 10 If Cov (X, Y) =0, then X and Y are called uncorrelated.

Example 4.3.1: Lists of Numbers (Correlation)

Consider random variables X and Y as defined in B.1.3]

The correlation coefficient between X and Y is

Cov (X,Y)

ox 0y
1.3

12
~ 0.91924

PXY =

4.3.1 Intuition About Correlation & Covariance

pxy =-0.893 pxv=0 pxy =0.471
Cov(X, Y)=-0.848 Cov(X,Y)=0 Cov(X, Y) -0.454

2 0 H 2 2 3 2 K] i 2 3

0
X X

(a) Cov(X,Y)<0and pxy <0 (b) Cov(X,Y)=0and pxy =0 (c) Cov(X,Y)>0and pxy >0

X o-

Figure 1: Varying signs and magnitudes of covariance and correlation coeflicient

e The sign (positive, negative, or zero) of the covariance will be the same as the sign of the
correlation coefficient:
Cov(X,Y)<0 = pxy <0
COV(X, Y):O = pxy:O
Cov(X,Y)>0 = pxy>0
e In general (but not always, since p also depends on o), a higher magnitude (absolute value)

covariance is associated with a higher magnitude p

Independence & correlation:

pxy =0 i X 1Y

Independence & covariance:

Cov(X,Y)=0 i XUy
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4.4 Moments

For k € N:

Definition 11 The k-th moment of X is defined as
E(xF)
Using this definition:
e k=0: E(X°)=1

e k=1: E(X')=E(X) (the expectation of X)

Definition 12 The k-th centered moment of X is defined as

E((X - B(X)")

Using this definition:

¢ k=0: E((X—E(X))O)zl
o k=1: E((X—E(X))l):E(X)—E(X):O

e k=2: FE ((X - E(X))Q) = Var (X) (the variance of X)

4.5 Properties
o Var(X) = E (X?) - (B (X))’
o Cov(X,Y)=E(X Y)-E(X) E(Y)
o BE(a-X+b)=a-E(X)+b
e Var (a- X +b) = a®- Var (X)
e Cov(X,Y)=Cov(Y, X)
e Var (X +Y) = Var (X) + Var (Y) + 2- Cov (X, Y)
e X LY = Var(X+Y)=Var(X)+ Var(Y)
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