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Bayes’ Theorem, Independence, & Discrete Statistical Measures
Instructor: Vishnu Boddeti Scribe: Molly Thornber

1 Bayes’ Theorem

1.1 Law of Total Probability

Let B1, B2, . . . , Bk be a disjoint partition of Ω with Bi ∈ A for all i and A ∈ A. Then:

P (A) =

k∑
i=1

P (A |Bi) · P (Bi)

=

k∑
i=1

P (A ∩Bi)

Example 1.1.1: Multiple Coin Tosses

Consider tossing a fair coin twice (and let order matter). Let 0 represent getting heads and 1
represent getting tails on a given toss. Intuitively, there are four possible outcomes, represented
by the set of ordered tuples Ω =

∏2
i=1 {0, 1} = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}.

Let the event A = {(0, 1) , (1, 1)}, i.e. getting tails on the second toss.

We can define B1, . . . , Bk as any disjoint partition of Ω, so for intuition’s sake, we can use a
partition based on the result of the first toss: B1 = {(0, 0) , (0, 1)} and B2 = {(1, 0) , (1, 1)}.
Since B1 ∪B2 = Ω and B1 ∩B2 = ∅, this is a disjoint partition.

Finally, since the coin is fair, define P such that each outcome in Ω is equally likely (probability
equal to 1

4 = 0.25).

What is the probability of A?

P (A) =

2∑
i=1

P (A |Bi) · P (Bi)

=

k∑
i=1

P (A ∩Bi)

= P ({(0, 1) , (1, 1)} ∩ {(0, 0) , (0, 1)}) + P ({(0, 1) , (1, 1)} ∩ {(1, 0) , (1, 1)})
= P ({(0, 1)}) + P ({(1, 1)})
= 0.25 + 0.25

= 0.5

Intuitively, we know the probability of getting heads on the second toss is equal to 0.5, so this
checks out.
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1.2 Bayes’ Formula

P (Bi |A) =
P (A |Bi) · P (Bi)∑k
i=1 P (A |Bi) · P (Bi)

=
P (A ∩Bi)

P (A)

Example 1.2.1: COVID Testing

Let COVID status be represented by C = {+c, −c} and test result be represented by T =
{+t, −t}.

Assume that:

• 1% of all people have COVID P (+c) = 0.01

• 90% of people with COVID test positive (true positive) P (+t | + c) = 0.90

• 8% of people without COVID test positive (false positive) P (+t | − c) = 0.08

Given that a person tested positive, what is the probability that they have COVID?

P (+c | + t) =
P (+t | + c) · P (+c)

P (+t | + c) · P (+c) + P (+t | − c) · P (−c)

=
0.9 · 0.01

0.9 · 0.01 + 0.08 · 0.99

≈ 10%

2 Independence

2.1 Independence of Events & Families of Events

Definition 1 Consider a probability space (Ω, A, P ).

Two events A and B are called independent (A ⊥⊥ B) if:

P (A ∩B) = P (A) · P (B)

A family of events (Ai)i∈I is called (mutually) independent if for all finite subsets J ⊆ I we have:

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai)

A family of events (Ai)i∈I is called pairwise independent if ∀ i, j ∈ I:

P (Ai ∩Aj) = P (Ai) · P (Aj)
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Note that pairwise independence does not imply independence, but independence does imply
pairwise independence:

pairwise independence ̸⇒
⇐ independence

Observation 2 For two events A and B,

A ⊥⊥ B ⇔ P (A |B) = P (A)

Example 2.1.1: Coin Tosses & Independence

Consider the same probability space as Example 1.1.1.

First, let events A and B represent getting tails on the first and second flips, respectively, of
the fair coin. Based on the probability space, we know that P (A) = P (B) = 2

4 = 0.5 and that
P (A ∩B) = 1

4 = 0.25.

We can show that A and B are independent:

P (A) · P (B) = 0.5 · 0.5 = 0.25 = P (A ∩B)

Now, consider a third variable C, representing the event in which exactly one of the two coin
tosses was tails (i.e. C = A⊕B). Now, we have a new event space:

Ω = {(0, 0, 0) , (0, 1, 1) , (1, 0, 1) , (1, 1, 0)}

We can show that the family of events X = {A, B, C} is pairwise independent:

P (A) · P (B) = 0.5 · 0.5 = 0.25 =P (A ∩B) = 0.25

P (A) · P (C) = 0.5 · 0.5 = 0.25 =P (A ∩ C) = 0.25

P (B) · P (C) = 0.5 · 0.5 = 0.25 =P (B ∩ C) = 0.25

We can also show that this family, X, is not independent:

P (A) · P (B) · P (C) = 0.5 · 0.5 · 0.5 = 0.125

P (A ∩B ∩ C) = 0

P (A) · P (B) · P (C) ̸= P (A ∩B ∩ C)

2.2 Independence of Random Variables

Definition 3 Two random variables X : Ω → Ω1 and Y : Ω → Ω2 are called independent (X ⊥⊥
Y ) if their induced σ-algebras σ (X) and σ (Y ) are independent:

∀A ∈ σ (X) , B ∈ σ (Y ) : P (A ∩B) = P (A) · P (B)
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2.3 Independence: Key Concepts

• Probability:

– Central Limit Theorem (CLT): for independent random variables {X1, . . . , Xn}, the sam-
ple means will converge to the expected population mean as n → ∞

– Addition of random variables: addition of independent random variables holds certain
properties such as

∗ E (X + Y ) = E (X) + E (Y )

∗ Var (X + Y ) = Var (X) + Var (Y )

• Algorithmic fairness/invariance: fairness can be achieved by enforcing ŷ ⊥⊥ S while learn-
ing for some predicted label ŷ and demographic variable S

• Learning theory: proving that an algorithm learns the correct prediction, converges at a
certain rate, etc. often requires the assumption that the training samples are independent

3 Expectation (Discrete Case)

3.1 Expectation

Definition 4 Let (Ω, A, P ) be a probability space, S ⊂ R be at most countable, and X : Ω → S be
a discrete random variable (i.e. image X (Ω) is at most countable).

If
∑

r∈S |r| · P (X = r) < ∞, then

E (X) :=
∑
r∈S

r · P (X = r)

is called the expectation of X.

Note: May also be written as EX, EX, or E (X)

Note: Equivalent to the weighted mean of the possible values of X, or the expected mean of X

Example 3.1.1: Coin Toss & Expectation

Consider tossing one coin. The sample space is Ω = {heads, tails} and the event space is
A = P (Ω) (a power series). We can define a variable 0 < p < 1 such that P (heads) = p and
P (tails) = 1 − p. Finally, we can define X : Ω → {0, 1} such that heads 7→ 0, tails 7→ 1.
Then

E (X) = 0 · P (X = 0) + 1 · P (X = 1)

= 0 · P (heads) + 1 · P (tails)

= 0 · p+ 1 · (1− p)

= 1− p
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Example 3.1.2: Classifier Error

Let ŷ = f (x) where f is a classifier, x is the input, and ŷ is the classifier output. Let y be the
target output. Then the classification error can be calculated using

e = (ŷ − y)
2
= (f (x)− y)

2

We can minimize error using
min
f

EX (e)

Example 3.1.3: Lists of Numbers (Expectation)

Let L1 and L2 be list of 10 numbers each:

L1 = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]

L2 = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]

Let X be a random variable representing the value of an element chosen randomly from L1.
Then

E (X) = 1 · P (X = 1) + 2 · P (X = 2) + 3 · P (X = 3) + 4 · P (X = 4)

= 1 · 1

10
+ 2 · 2

10
+ 3 · 3

10
+ 4 · 4

10
= 0.1 + 0.4 + 0.9 + 1.6

= 3

Let Y be a random variable representing the value of an element chosen randomly from L2.
Then

E (Y ) = 1 · P (Y = 1) + 2 · P (Y = 2) + 3 · P (Y = 3) + 4 · P (Y = 4) + 5 · P (Y = 5)

= 1 · 2

10
+ 2 · 2

10
+ 3 · 2

10
+ 4 · 2

10
+ 5 · 2

10
= 0.2 + 0.4 + 0.6 + 0.8 + 1.0

= 3

3.2 Centered Random Variables

Definition 5 A random variable X is called centered if

E (X) = 0
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3.3 Properties of Expectation

Let X and Y be random variables.

• Independence & expectation:

X ⊥⊥ Y ⇒ E (X · Y ) = E (X) · E (Y )

• Linearity: (for a, b ∈ R)

E (a ·X + b · Y ) = a · E (X) + b · E (Y )

E (a ·X + b) = a · E (X) + b

E (a) = a

4 Variance, Covariance, & Correlation (Discrete Case)

Let X, Y : (Ω, A, P ) → R be discrete random variables with E
(
X2
)
< ∞ and E

(
Y 2
)
< ∞.

4.1 Variance

Definition 6 The variance of X is defined as

Var (X) := E
(
(X − E (X))

2
)

Definition 7 The standard deviation of X is defined as

σX :=
√

Var (X)

Example 4.1.1: Lists of Numbers (Variance)

Consider random variables X and Y as defined in 3.1.3.

The variance and standard deviation of X are

Var (X) = E
(
(X − E (X))

2
)

= E
(
X2 − 2 ·X · E (X) + E (X)

2
)

= E
(
X2
)
− 2 · E (X)

2
+ E (X)

2

= E
(
X2
)
− E (X)

2

=

(
12 · 1

10
+ 22 · 2

10
+ 32 · 3

10
+ 42 · 4

10

)
− 32

= 0.1 + 0.8 + 2.7 + 6.4− 9

= 1

σX =
√

Var (X)

=
√
1 = 1
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The variance and standard deviation of Y are

Var (Y ) = E
(
(Y − E (Y ))

2
)

. . .

= E
(
Y 2
)
− E (Y )

2

=

(
12 · 2

10
+ 22 · 2

10
+ 32 · 2

10
+ 42 · 2

10
+ 52 · 2

10

)
− 32

= 0.2 + 0.8 + 1.8 + 3.2 + 5− 9

= 2

σY =
√

Var (Y )

=
√
2

4.2 Covariance

Definition 8 The covariance of X and Y is defined as

Cov (X, Y ) := E ((X − E (X)) · (Y − E (Y )))

Example 4.2.1: Lists of Numbers (Covariance)

Consider random variables X and Y as defined in 3.1.3.

The covariance of X and Y is

Cov (X, Y ) = E ((X − E (X)) · (Y − E (Y )))

= E (X · Y −X · E (Y )− Y · E (X) + E (X) · E (Y ))

= E (X · Y )− 2 · E (X) · E (Y ) + E (X) · E (Y )

= E (X · Y )− E (X) · E (Y )

=

(
1 · 1

10
+ 2 · 1

10
+ 4 · 1

10
+ 6 · 1

10
+ 9 · 2

10
+ 16 · 2

10
+ 20 · 2

10

)
− 3 · 3

= 0.1 + 0.2 + 0.4 + 0.6 + 1.8 + 3.2 + 4.0− 9

= 1.3

4.3 Correlation

Definition 9 The correlation coefficient between X and Y is defined as

ρXY =
Cov (X, Y )

σX · σY
∈ [−1, 1]
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Definition 10 If Cov (X, Y ) = 0, then X and Y are called uncorrelated.

Example 4.3.1: Lists of Numbers (Correlation)

Consider random variables X and Y as defined in 3.1.3.

The correlation coefficient between X and Y is

ρXY =
Cov (X, Y )

σX · σY

=
1.3

1 ·
√
2

≈ 0.91924

4.3.1 Intuition About Correlation & Covariance

(a) Cov (X, Y ) < 0 and ρXY < 0 (b) Cov (X, Y ) = 0 and ρXY = 0 (c) Cov (X, Y ) > 0 and ρXY > 0

Figure 1: Varying signs and magnitudes of covariance and correlation coefficient

• The sign (positive, negative, or zero) of the covariance will be the same as the sign of the
correlation coefficient:

Cov (X, Y ) < 0 ⇒ ρXY < 0

Cov (X, Y ) = 0 ⇒ ρXY = 0

Cov (X, Y ) > 0 ⇒ ρXY > 0

• In general (but not always, since ρ also depends on σ), a higher magnitude (absolute value)
covariance is associated with a higher magnitude ρ

• Independence & correlation:

ρXY = 0
̸⇒
⇐ X ⊥⊥ Y

• Independence & covariance:

Cov (X, Y ) = 0
̸⇒
⇐ X ⊥⊥ Y
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4.4 Moments

For k ∈ N:

Definition 11 The k-th moment of X is defined as

E
(
Xk
)

Using this definition:

• k = 0 : E
(
X0
)
= 1

• k = 1 : E
(
X1
)
= E (X) (the expectation of X)

Definition 12 The k-th centered moment of X is defined as

E
(
(X − E (X))

k
)

Using this definition:

• k = 0 : E
(
(X − E (X))

0
)
= 1

• k = 1 : E
(
(X − E (X))

1
)
= E (X)− E (X) = 0

• k = 2 : E
(
(X − E (X))

2
)
= Var (X) (the variance of X)

4.5 Properties

• Var (X) = E
(
X2
)
− (E (X))

2

• Cov (X, Y ) = E (X · Y )− E (X) · E (Y )

• E (a ·X + b) = a · E (X) + b

• Var (a ·X + b) = a2 · Var (X)

• Cov (X, Y ) = Cov (Y, X)

• Var (X + Y ) = Var (X) + Var (Y ) + 2 · Cov (X, Y )

• X ⊥⊥ Y ⇒ Var (X + Y ) = Var (X) + Var (Y )
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