CSE 840: Computational Foundations of Artificial Intelligence January 22, 2025

Linear Mappings
Instructor: Vishnu Boddeti Scribe: Auden Garrard

1 Linear Mapping

Definition 1 Let U,V be vector spaces over the same field F'. A mapping T : U — V is called a
linear map if Vui,us € U and A € F':

T(U1 + ’U,Q) = T(ul) + T(UQ)
T(Auy) = AT (uq).
The set of all linear mappings from U — V is denoted is denoted L(U,V).

If U =V, then we denote L(U)

Examples

e The zero map 0: V — W, mapping every element v € V to 0 € W, is linear.

e The identity map I : V — V| defined as Iv = v, is linear.

e None linear, For example, the exponential function f(z) = e® is not linear since €2 # 2¢7.

e None linear, the function f: F — F given by f(x) =« — 1 is not linear since:

f@ty=@+y) -1#@-+Hy-1)=flx)+f(y).

Definition 2 T € L(U,V). Then Kernel of T (null-space of T') is defined as

ker(T) :=null(T) :== {v € U|T,, =0}
Proposition 3

o ker(T) is a subspace of U

o T injective if and only if kern(T) =0
Definition 4 The range of T' (image of T') is defined as

range(T) := image(T) := {T,|u € U}



Proposition 5

e The range is always a subspace of V

o T is subjective if and only if range(T) =V

Definition 6 Let v’ be any subset of V i.e v’ C The pre-image of v’ is defined as

T71(v") :=={u e U|T, € v'}
Proposition 7 Ifv' CV is a subspace of V' then T~ 1(v' is a subspace of U)

Theorem 8 Let V be a finite-dimensional vector space, W be any vector space, and T € L(V,W).
Let (uq,...,uy) be a basis of ker(T) C V. Let (wy,...,wy) be a basis of range(T) C W. Then:

U, ... 7un,Tfl(wl), o T N wy) CV

form a basis of V. In particular:
dim (V') = dim(ker(T")) + dim(range(7)).

Proof: Denote T~ 1(wy) = z1,..., T 1(W,,) = Z, Step 1: V C span{uy,...,uz,21;...,2m}
Step One: Let ¢ € V consider T, € range(T); Reminder v1, ..., v, are basis of ker(T)
= I\, ..., Ams.t.
Tv = )\111)1 + )\211)2 —+ ... )\me
= )\1T(21) + )\2T(22) N )\mzm
= T()\lzl + Aozo + ... )\mzm)
=Tv— T()\lzl + Xozg + ... /\mzm) =0
= T(’U — (/\12’1 4+ Aozo + - - +)\mzm) =0

Cker(T)

= duq, ... pms.t.
v—(A121 + Aaza 4+ -+ Anzim) = paug + pous + .. ity
= v =MA21+ Az + -+ AnZm + UL F fols + ... Uy

Step Two: uq,us, ..., Uy; 21, 22, - . ., 2m are linearly independent.
Assume that pug + ... fpty + A121 + -+ A2 = o*

Now consider: Adjwi + ... Apwm = MT(z21) + ... AT (zm)
=MT(z1) + .. AT (zm) + T (ur) + - - + T (un)

0
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T(Mz+ -+ Amzm + paug + -+ + ppuy) =0

0 by *

= Mwi + -+ AW, =0
= wi... Wy basis \1 =0...A, =0

1 = fto = -+ = u, = 0 since uq, ..., u, are basis

Example

Consider a matrix A € R3*3 representing a linear map 7 : R® — R3. Suppose the rank of A is 2
(i.e., the dimension of the image of T' is 2), and the nullity of A is 1 (i.e., the dimension of the kernel
is 1). The Rank-Nullity Theorem tells us that:

dim(R?) = dim(ker(A)) + dim(range(A)),

so:
3=1+2.

Proposition 9 T € L(V,V), V is finite_dim. Then the following statements are equivalent:

o T is injective
o T is surjective

o T is bijective

Proof: Direct consequence of theorem. Also, only holds in finite dimensional spaces O

Real world examples

e Proposition 5 importance

— The range of the subspace is crucial in Principal Component Analysis (PCA), especially
when reducing dimensions. PCA projects the data onto a lower-dimensional subspace
(the range) that captures as much of the data’s variance as possible.

e Pre-images

— Support Vector Machines (SVMs) work by mapping data to a higher-dimensional space to
make the problem linearly separable. The pre-images help make it possible to understand
how the original data corresponds to points or subsets in the feature space
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2 DMatrices and Linear Maps

Notation:
a11 o A1n
A = The j-row : : = (aij)i=1,....mj=1,....n
Am1 T Amn
n—columns
Proposition 10 Consider T € L(v,w), v,w finite _dim, let vi,...,v;, be a basis of V, wy, ...

be a basis of W

[ ]
V=MNv1+- 4+ A
T(v) =T(A01 + -+ A\ptn)
=MT (V1) + -+ AT (vy)
o FEach image vector Tv; can be expressed in basis w1, ..., Wn: there exist co-coefficients a1 j, . . .

s.t,
T(vj) = arjwi + -+ + Gmjwm,

e we now stack a these co-efficient in a matriz:

a1l [ a/lj PR A1n

Am1 e amj e Amn

7wm

; AmJ

Notation: Let T': V — W be linear. let B a basis of V, C basis of W. We denote by M (T, B,C)

the matrix corresponding to 7" with respect to bases B and C

Convenient propertied of matrix Let VW be vector spaces, consider the bases fixed. Let

S, TeL(V,W)

e Linear properties of mapping extend to matrices as well:
M(S+T)=M(S)+ M(T)
M(AS) = AM(S)

e For v = A\yv1 + - -+ + A\, v, we have that:

A1
T(v) = M@)| :
—~—
image of v under T' )\n
~———

matrix-vector product

where (01, ...,%,,) is a basis of V.
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e T:C—V;S:V — W linear, then M(SoT)= M(S) x M(T)

e o is the composition of the maps S and T
Additional Properties

e Addition and Scalar Multiplication

Commutativity of addition:
A+B=B+ A

— Associativity of addition:
A+(B+C)=(A+B)+C

Distributive property for scalar multiplication:

¢(A+B)=cA+cB

Distributive property for scalars:
(c+d)A=cA+dA

— Multiplication by scalar 1:
1A=A

e Matrix Multiplication

— Associativity:

A(BC) = (AB)C
— Distributive Property:

A(B+C)=AB+AC and (A+ B)C = AC + BC

Not Commutative:

AB # BA in general (Matrix multiplication is not commutative).

Identity Matrix (I):
Al =TA=A

e Transpose of a Matrix

— Transpose of transpose:
(AT = A

Transpose of addition:
(A+B)T = AT + BT

— Transpose of scalar multiplication:

(cA)T = cAT

Transpose of product:

(AB)T = BT AT (Order reverses under transpose).
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There are more Properties that will be covered in later lectures

Real world examples

e Matrices are widely used in Al because they provide an efficient way to store and manipulate
data in areas such as optimization, neural networks, and computer vision and many more.

3 Indivertible maps and Matrices

Definition 11 T € L(V, W) is called invertible if there exist a linear map S € L(w,v) such that
SoT =1d, and T oS = Id,,

The map S is called the inverse of T, denoted by T 1
Remark 12 Inverse maps exist and are unique
Proposition 13 A linear map is invertible if and only if it is bijective

Proof: "=" invertible = injective:
suppose T'(u) = T'(v).
Then u = T~ (T (u))
=T"YTW)) =v
= u = v = injective = surjective:
w € WThen w = T(T™ ! (w)
= w € range of T = surjective
"<" injective and surjective = invertible Let w € W There exists unique 7 € V s.t T(u) = w
Define the mapping: S(w) = ¢. Clearly have T o .S = Id let ¥ € V. Then
T((soT)0)=(ToS)TV)=IdoTtv =TV
= (SoT)o=10
=SoT=1d

= S is inverse of T

Still need to show S us a linear mapping. Let Y1,Ys € W,a € F :

S(Yl + YQ) = S(Yl) + S(Yg) and S(OZYl) = O[S(Yl)

Let x1,29 € V s.t T(x;) = y; Then S(y;) = z;
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S(Y1+Yy) = S(T(21) + T(x2))
=T + T2

— 5(¥1) + S(Ya)

= 5 is a linear transformation
Example using Gaussen elemation
4 7 . . . . 4 7|1
A= (2 6) Augment with the identity matrix: ( 2 60

1
2

[«pFNEN]

Step 2: Divide the first row by 4: (

Okl
— O
N~~~

Step 3: Subtract 2 times the first row from the second row:

N
O =

(SIS BNEN

‘ PN
N|—

— o
N—

2 1 I 10
Step 4: Multiply the second row by — : 40 4,
5 0 1]-5 3

7
Step 5: Subtract 1 times the second row from the first row: (

)

O =
—
| =
cn\»—p‘w
(11 !
=B
N~

|ee

The inverse is: A~ ' = ( 1

S
AL
ol~

4 Inverse Matrices

Definition 14 A square matriz A € F™" is invertible if there exist a square matric B € F™" such
that: A x B = B x A = Identity matriz = Id

The matriz B is called the inverse matriz , and is denoted by A~!
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Proposition 15 The inverse matriz represents the inverse of the corresponding linear map, that is:
T:V >V

M) = (M(1))~!
N—_—— N——
matriz of invers map inverse matriz of the original map

In particular, a matriz in Invertible if and only if the corresponding map is Invertible.

Remark 16

The inverse matrix does not always exist

(A ) t=A;(AxB)t=B"1x A1

Al invertible < A invertible

(At)fl — (Afl)t

o A e F™" jnvertible < rank(A) =n

The set of all invertible matrices is called general linear group:

GL(n,F)= A € F""|A is invertible

Additional Properties

Inverse of a Matrix

e If A is invertible:

e Double Inverse Property:

Take inverse by hand 2x2 matrix

a b 1 d —b
c d| ad — be —c a
——

determinant of a 222 matrix

Example
4 77 1 6 -7] 1[6 -7 [06 —07
2 6] T 4x6-7Tx2|-2 4| 10|-2 4] |-02 04
Remark 17 Anything bigger than a 2x2 matriz look into using Gauss-Jordan elimination method.
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