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1 Introduction

Linear transformations often do more than just move vectors around—they can stretch or compress
them along specific directions. When a transformation T acts on a vector v such that

T (v) = λv,

we say that v is an eigenvector of T and λ is its corresponding eigenvalue. In essence, the
transformation simply scales v by λ without changing its direction.

To find these special values, we use the characteristic polynomial of a matrix A, defined as

PA(t) = det(A− tI).

The roots of this polynomial give us the eigenvalues of A.

Another key concept is the trace of a matrix, which is the sum of its diagonal entries. Interestingly,
if a matrix is diagonalizable, its trace is equal to the sum of its eigenvalues, offering quick insight
into the overall effect of the matrix.

In the sections that follow, you will delve into these ideas, exploring their properties and applications
in a clear manner.

2 Eigenvalues and Eigenvectors

Definition 1. Let T : V → V be a linear transformation on a vector space V over a field F . A
scalar λ ∈ F is called an eigenvalue if there exists a nonzero vector v ∈ V such that

Tv = λv.

The vector v (v ̸= 0) is then called an eigenvector corresponding to λ. We also define the
eigenspace associated with λ as

E(λ, T ) = {v ∈ V | T (v) = λv} = ker(T − λI).

which is the set of all the eigenvectors corresponding to λ (including the zero vector).

Remark 2. The following points highlight some important aspects of eigenvalues and eigenvectors:

• Scaling Property: When T (v) = λv, the transformation scales v by λ without changing its
direction.
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• Existence in Different Fields: Many linear maps (like rotations) in R do not have eigen-
vectors. However, over an algebraically closed field such as C or a complex field, every linear
operator has at least one eigenvalue. An algebraically closed field is one in which every
non-constant polynomial has at least one root within the field. While the complex numbers C
are algebraically closed, the real numbers R are not. For example, consider the polynomial

x2 + 1 = 0.

This equation has no solution in R because the square of any real number is non-negative.
However, in C, it has the two solutions x = i and x = −i. Thus, R is not algebraically closed,
which is one reason why some real linear transformations (like rotations) may not have real
eigenvalues, even though they always have complex eigenvalues when viewed over C.

• Multiple Eigenvectors: If λ is an eigenvalue, then there are infinitely many eigenvectors
corresponding to it. For instance, if v is an eigenvector, any nonzero scalar multiple a ·v (with
a ∈ K) is also an eigenvector, since

T (a · v) = a · T (v) = a · λv = λ(a · v).

• Linear Independence for Distinct Eigenvalues: Eigenvectors corresponding to distinct
eigenvalues are linearly independent. To illustrate, suppose v1 and v2 correspond to λ1 and λ2

with λ1 ̸= λ2. If we assume v1 and v2 are linearly dependent, v2 = c · v1 for some scalar c,
then

T (v1) = λ1v1 and T (v2) = T (c · v1) = c · T (v1) = cλ1v1,

but also T (v2) = λ2v2 = λ2(c · v1) = cλ2v1. Since λ1 ̸= λ2, this yields a contradiction.

• Dependence within the Same Eigenspace: Eigenvectors corresponding to the same eigen-
value need not be linearly independent. For example, both v and c · v (with c ̸= 0) are eigen-
vectors for λ, but they are linearly dependent.

• Choosing a Basis: Even though any two scalar multiples of the same eigenvector are depen-
dent, it is often possible to select a maximal set of linearly independent eigenvectors from the
eigenspace. For example, if A = I (the identity matrix), every vector is an eigenvector with
eigenvalue 1, yet we can choose a basis for the space.

• Eigenspace is a Subspace: Finally, the eigenspace E(λ, T ) = ker(T −λI) is always a linear
subspace of V .

A Visual Insight

The following diagram helps visualize the idea: the blue arrow represents an eigenvector v and the
red arrow shows T (v) = λv, which is a scaled version of v along the same direction.
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Figure 1: The eigenvector v (blue) is scaled by λ to produce T (v) (red), which remains in the same
direction.

Proposition 3. For a finite-dimensional vector space V and a linear transformation T ∈ L(V ), the
following statements are equivalent:

1. λ is an eigenvalue of T .

2. The transformation T − λI is not one-to-one (injective).

3. The transformation T − λI is not onto (surjective).

4. The transformation T − λI is not bijective.

Proof. Step 1. Suppose (1) holds; that is, λ is an eigenvalue of T . By definition, there exists a
nonzero vector v ∈ V such that

T (v) = λv.

Rearrange this equation to get:

(T − λI)(v) = T (v)− λv = 0.

Since v is nonzero, this shows that the kernel of T −λI is not just {0} (i.e., it is nontrivial). A linear
transformation with a nontrivial kernel cannot be one-to-one. Therefore, (1) implies (2). In other
words, a linear transformation, T − λI is said to be one-to-one (injective) if its kernel is trivial, i.e.,

ker(T − λI) = {0}.

This occurs if and only if there is no nonzero vector v such that (T − λI)v = 0. In the context of
eigenvalues, this means that λ is not an eigenvalue of T . Conversely, if λ is an eigenvalue, then there
exists a nonzero v satisfying (T − λI)v = 0, and thus T − λI is not one-to-one.

Step 2. In a finite-dimensional vector space, a linear transformation is injective if and only if it is
surjective. Thus, if T − λI is not injective (from Step 1), it must also be not surjective. This shows
that (2) implies (3).
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Step 3. If T−λI is not injective or not surjective, then it is not bijective. Hence, (2) (or equivalently
(3)) implies (4).

Step 4. Finally, assume (4): that is, T − λI is not bijective. In particular, it is not injective, which
means there exists a nonzero vector v such that

(T − λI)(v) = 0.

This rearranges to:
T (v) = λv,

so v is an eigenvector corresponding to λ. Therefore, λ is an eigenvalue of T , showing that (4)
implies (1).

Since we have shown that each statement leads to the next in a cycle, all four statements are
equivalent. □

Proposition 4. Suppose V is a finite-dimensional vector space, T ∈ L(V ), and λ1, λ2, . . . , λm are
distinct eigenvalues of T . Then the sum of the corresponding eigenspaces

E(λ1, T ) + E(λ2, T ) + · · ·+ E(λm, T )

is a direct sum. In particular,

dimE(λ1, T ) + dimE(λ2, T ) + · · ·+ dimE(λm, T ) ≤ dimV.

Proof. (Outline) The proof is based on the fact that eigenvectors corresponding to distinct eigenval-
ues are linearly independent. Assume a nontrivial linear combination of eigenvectors from different
eigenspaces yields the zero vector. Using the fact that T acts by scaling each eigenvector by its
corresponding eigenvalue, one deduces that the coefficients in the linear combination must be zero.
This shows the set of eigenvectors is linearly independent, so the sum of the eigenspaces is direct.

□

Theorem 5. Every linear operator T : V → V on a finite-dimensional vector space V over the
complex field C has at least one eigenvalue.

Proof. Let n = dimV and choose a nonzero vector v ∈ V . Then the set

{v, T (v), T 2(v), . . . , Tn(v)}

consists of n+1 vectors in an n-dimensional space, and hence must be linearly dependent. Therefore,
there exist scalars a0, a1, . . . , an, not all zero, such that

a0v + a1T (v) + a2T
2(v) + · · ·+ anT

n(v) = 0.

Define the polynomial
P (z) = a0 + a1z + a2z

2 + · · ·+ anz
n.

Since C is algebraically closed, P (z) can be factorized as

P (z) = c(z − λ1)(z − λ2) · · · (z − λm),

with m ≤ n. Replacing z by T in the polynomial, we have

(a0 + a1T + · · ·+ anT
n) v = c(T − λ1I)(T − λ2I) · · · (T − λmI)v = 0.

Since v ̸= 0, at least one factor T−λiI must have a nontrivial kernel, showing that λi is an eigenvalue
of T . □
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Problem 1: Verifying Proposition 3

Problem: Consider the matrix
A =

(
2 1
0 2

)
.

Show that λ = 2 is an eigenvalue and verify that A− 2I is not injective. Compute ker(A− 2I) and
explain the result.

Solution: We compute

A− 2I =

(
2− 2 1
0 2− 2

)
=

(
0 1
0 0

)
.

The equation (A− 2I)x = 0 becomes:(
0 1
0 0

)(
x1

x2

)
=

(
x2

0

)
=

(
0
0

)
.

Thus, x2 = 0 and x1 is free. Therefore,

ker(A− 2I) =

{(
x1

0

)
| x1 ∈ R

}
.

Since the kernel is nontrivial, A− 2I is not injective, confirming that 2 is indeed an eigenvalue of A.

Problem 2: Direct Sum of Eigenspaces (Proposition 4)

Problem: Let
B =

(
3 0
0 5

)
.

Identify the eigenvalues and the corresponding eigenspaces of B, and verify that the sum of these
eigenspaces is a direct sum.

Solution: The eigenvalues of B are λ1 = 3 and λ2 = 5. The corresponding eigenspaces are:

E(3, B) =

{(
x
0

)
| x ∈ R

}
, E(5, B) =

{(
0
y

)
| y ∈ R

}
.

Any vector in R2 can be uniquely expressed as a sum of a vector from E(3, B) and a vector from
E(5, B). Therefore, the sum is direct, and we have:

dimE(3, B) + dimE(5, B) = 1 + 1 = 2 = dimR2.

3 Characteristic Polynomial

Before we define the characteristic polynomial, let’s build some intuition. Suppose A is an n × n
matrix and there exists a nonzero vector v (i.e., v ̸= 0) such that

Av = λv.

This equation means that v is an eigenvector of A corresponding to the eigenvalue λ. Rearranging
the equation gives

(A− λI)v = 0.

1-5



Since v is nonzero, this tells us that v lies in the kernel of A− λI, so

ker(A− λI) ̸= {0}.

In a finite-dimensional vector space, the Rank-Nullity Theorem states that

dimV = dimker(A− λI) + dim im(A− λI).

Because dimker(A− λI) ≥ 1 (since it contains v), it follows that the rank of A− λI is less than n.
In other words, A− λI is not invertible, which means

det(A− λI) = 0.

This equation is key—it tells us that any eigenvalue λ must satisfy det(A− λI) = 0. This condition
is precisely what we use to define the characteristic polynomial.

Definition 6. For an n× n matrix A, the characteristic polynomial is defined by

PA(t) := det(A− tI).

The eigenvalues of A are the roots of this polynomial.

Consider the matrix
A =

(
a11 a12
a21 a22

)
.

Its characteristic polynomial is computed as:

PA(t) = det

(
a11 − t a12
a21 a22 − t

)
= (a11 − t)(a22 − t)− a12a21

= t2 − t(a11 + a22) + (a11a22 − a12a21).

Remark 7 (Observation 8). The following observations hold for the characteristic polynomial PA(t):

• PA(t) is a polynomial of degree n if A is an n× n matrix.

• Characteristic polynomials are invariant under a change of basis. That is, if U is an invertible
matrix, then the matrices A and UAU−1 have the same characteristic polynomial.
Proof: Observe that

PUAU−1(t) = det(UAU−1−tI) = det(U(A−tI)U−1) = det(U) det(A−tI) det(U−1) = det(A−tI).

• The roots of PA(t) are exactly the eigenvalues of A.

• Over C, the polynomial always has n roots (counting multiplicity), so A has n eigenvalues (not
necessarily distinct).

• A matrix A is invertible if and only if 0 is not an eigenvalue (since if 0 is an eigenvalue, there
exists a nonzero v such that Av = 0, making A non-injective).

• If A ∈ L(V ) and λ is an eigenvalue of A, then λ2 is an eigenvalue of A2 (since A2v = λ2v).

• If A is invertible and λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1.
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Definition 8 (Geometric Multiplicity). For an operator A with eigenvalue λ, the geometric mul-
tiplicity is defined as the dimension of the corresponding eigenspace:

dimE(λ,A).

Definition 9 (Algebraic Multiplicity). The algebraic multiplicity of an eigenvalue λ is the number
of times λ appears as a root of the characteristic polynomial PA(t).

Remark 10. In general, the geometric multiplicity is less than or equal to the algebraic multiplicity.
That is, even if an eigenvalue appears multiple times in the characteristic polynomial, the number of
linearly independent eigenvectors corresponding to that eigenvalue may be smaller. In other words,
the two notions are not the samee.

Remark 11 (Computing Eigenvalues and Eigenvectors). To compute the eigenvalues of a matrix
A, one typically:

1. Writes down the characteristic polynomial PA(t) = det(A− tI).

2. Finds the roots of PA(t), which are the eigenvalues.

Once the eigenvalues are known, the corresponding eigenvectors can be computed by solving the
system:

(A− λI)x = 0.

A Visual Insight of the Characteristic Polynomial

The diagram below illustrates a schematic view of a characteristic polynomial. The polynomial
PA(t) is plotted along the t-axis, and its roots (where the curve crosses the t-axis) correspond to the
eigenvalues of A.

λ1 = 2 λ2 = 5

t

PA(t)

Characteristic Polynomial: PA(t) = t2 − 7t+ 10

Figure 2: Plot of the characteristic polynomial PA(t) = t2 − 7t + 10 with eigenvalues at t = 2 and
t = 5.
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Problem 3: Understanding the Characteristic Polynomial

Problem: Let
A =

(
4 2
1 3

)
.

1. Compute the characteristic polynomial PA(t).

2. Find the eigenvalues of A.

Solution:

1. The characteristic polynomial is given by:

PA(t) = det(A− tI) = det

(
4− t 2
1 3− t

)
.

Compute the determinant:

PA(t) = (4− t)(3− t)− (2)(1) = (12− 4t− 3t+ t2)− 2 = t2 − 7t+ 10.

2. Factorize the polynomial:
t2 − 7t+ 10 = (t− 2)(t− 5).

Therefore, the eigenvalues of A are λ1 = 2 and λ2 = 5.

Problem 4: Real vs. Complex Eigenvalues (Theorem 5)

Problem: Explain why every linear operator T : V → V on a finite-dimensional vector space over
C has an eigenvalue, but a real matrix might not have a real eigenvalue. Use the rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
as an example, and find its eigenvalues when θ ̸= kπ (with k an integer).

Solution: The characteristic polynomial of R(θ) is

P (t) = det (R(θ)− tI) = det

(
cos θ − t − sin θ
sin θ cos θ − t

)
.

This expands to:

P (t) = (cos θ − t)2 + sin2 θ = t2 − 2 cos θ t+ (cos2 θ + sin2 θ) = t2 − 2 cos θ t+ 1.

Using the quadratic formula, we obtain:

t =
2 cos θ ±

√
4 cos2 θ − 4

2
= cos θ ± i sin θ.

Thus, for θ ̸= kπ, the eigenvalues are complex. This shows that while every operator on a complex
vector space has an eigenvalue (by Theorem 5), a real matrix like R(θ) may not have real eigenvalues
because R is not algebraically closed.
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4 Trace of a Matrix

Definition 12. The trace of a square matrix A ∈ Fn×n is the sum of its diagonal elements:

tr(A) =

n∑
i=1

aii.

Remark 13 (Properties of the Trace). The trace function tr has several important properties:

• tr : Rn×n → R is a linear operator; in particular,

tr(A+B) = tr(A) + tr(B)

and for any scalar c, tr(cA) = c tr(A).

• It satisfies the cyclic property:
tr(A ·B) = tr(B ·A).

(Note: In general, tr(A ·B) ̸= tr(A) · tr(B).)

• The trace is invariant under a change of basis. That is, if T ∈ L(V ) and U and W are two
bases of V , then the matrix representations M(T,U) and M(T,W ) satisfy:

tr(M(T,U)) = tr(M(T,W )).

• If A is diagonalizable (or more generally, when considered over C), the trace of A equals the
sum of its eigenvalues (counted with their algebraic multiplicities). For example, if

Ã =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

then
tr(Ã) = λ1 + λ2 + · · ·+ λn.

• The trace of A is also equal to the negative of the coefficient of tn−1 in the characteristic
polynomial

PA(t) = tn + an−1t
n−1 + · · ·+ a0.

That is, tr(A) = −an−1.

• The trace of A equals the sum of its eigenvalues (when they exist)

• Finally, the determinant of A equals the product of its eigenvalues (when they exist):

det(A) = λ1λ2 · · ·λn.

Consider the 2×2 rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

We compute several properties of R(θ):
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• Trace: The trace is the sum of the diagonal elements:

tr(R(θ)) = cos θ + cos θ = 2 cos θ.

• Characteristic Polynomial: The characteristic polynomial is given by

PR(θ)(t) = det(R(θ)− tI).

First, compute

R(θ)− tI =

(
cos θ − t − sin θ
sin θ cos θ − t

)
.

Then, the determinant is

PR(θ)(t) = (cos θ − t)(cos θ − t)− (− sin θ)(sin θ)

= (cos θ − t)2 + sin2 θ

= t2 − 2 cos θ t+ (cos2 θ + sin2 θ)

= t2 − 2 cos θ t+ 1.

• Eigenvalues: The eigenvalues of R(θ) are the roots of the characteristic polynomial

t2 − 2 cos θ t+ 1 = 0.

Using the quadratic formula,

t =
2 cos θ ±

√
(2 cos θ)2 − 4 · 1 · 1

2
= cos θ ± i sin θ.

Thus, the eigenvalues are cos θ ± i sin θ; they are complex unless θ is an integer multiple of π.

Problem: Exploring a Rotation Matrix

Problem: Let
B =

(
0 −1
1 0

)
.

1. Compute the trace of B.

2. Determine the characteristic polynomial PB(t) = det(B − tI).

3. Find the eigenvalues of B.

Solution:

1. Trace: The trace of B is the sum of its diagonal entries:

tr(B) = 0 + 0 = 0.

1-10



2. Characteristic Polynomial: First, we form B − tI:

B − tI =

(
0− t −1
1 0− t

)
=

(
−t −1
1 −t

)
.

Then, compute the determinant:

PB(t) = det(B − tI) = (−t)(−t)− (−1)(1) = t2 + 1.

3. Eigenvalues: The eigenvalues are the roots of the characteristic polynomial:

t2 + 1 = 0.

Solving for t:
t2 = −1 ⇒ t = ±i.

Thus, the eigenvalues of B are i and −i.

5 Applications in AI

Eigenvalues and eigenvectors are fundamental in many AI techniques. In this section, we present
two simple applications: Principal Component Analysis (PCA) and Spectral Clustering.

5.1 Principal Component Analysis (PCA) in AI

Principal Component Analysis (PCA) is a widely used method for dimensionality reduction in ma-
chine learning. It transforms a high-dimensional dataset into a set of linearly uncorrelated variables,
called principal components, that capture the most variance in the data.

• Step 1: Compute the covariance matrix Σ of the dataset X. For a dataset X ∈ Rm×n (with
m samples and n features), the covariance matrix is given by:

Σ =
1

m− 1
XTX.

• Step 2: Calculate the eigenvalues and eigenvectors of Σ.

• Step 3: The eigenvectors corresponding to the largest eigenvalues capture the directions of
maximum variance. Projecting the data onto these eigenvectors reduces the dimensionality
while preserving key information.

Example: In an image recognition task, each image is often represented as a high-dimensional
vector. By applying PCA, you can reduce the dimensionality of the image data, thereby speeding
up the classification process and often reducing noise.

For more details, see: Wikipedia: Principal Component Analysis.
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5.2 Spectral Clustering in AI

Spectral clustering groups similar data points using the eigen-decomposition of a graph Laplacian.
Briefly:

1. Build a similarity graph (nodes represent data points).

2. Form the Laplacian L = D−W , where W is the similarity matrix and D is the degree matrix.

3. Compute the eigenvectors corresponding to the smallest nonzero eigenvalues of L.

4. Cluster the data (e.g., using k-means) on the rows of the eigenvector matrix.

Example: Consider a social network where nodes represent individuals and edges represent friend-
ships. Spectral clustering can identify communities by grouping nodes that are more densely inter-
connected.

For more details, see: Wikipedia: Spectral Clustering.
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