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Lecture 7
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1 Introduction

Metric spaces measure distances and lengths. The inner product extends this idea to vector spaces
by defining angles and magnitudes.

2 Inner Product and Hilbert Spaces

Definition 1 Consider a vector space V . A mapping < ·, · >: V ×V → F is called an inner product
if it satisfies the following properties:

• (P1): < x1 + x2, y >=< x1, y > + < x2, y >

• (P1): < λx, y >= λ < x, y > (λ ∈ F )

• (P3): < x, y >= < y, x >

• (P4):< x, x >≥ 0

• (P5): < x, x >= 0 ⇔ x = 0

Examples:

• Euclidiean inner product on Rn: < x, y >=
∑n

i=1 xiyi.

• On Cn, ⟨x, y⟩ =
∑

xiyi

• C([a, b]): < f, g >=
∫ b

a
f(t)g(t)dt is an inner product (but space would not be complete)

Definition 2 A vector space with a norm is called a normed space. If every Cauchy sequence
in the space converges, then it is called a Banach space. A vector space with an inner product is
called a pre-Hilbert space. If it is additionally complete, then V is called a Hilbert Space.

Consider a vector space with an inner product < ·, · >. Define ∥ · ∥ : V → R as ∥x∥ :=
√
< x, x >.

Then ∥ · ∥ is a norm on V , the norm is induced by < ·, · >. In general, the other way does not work.

Consider a vector space V with norm ∥ · ∥. Then d : V × V → R, d(x, y) := ∥x− y∥ is a metric on
V , the metric is induced by the norm. In general, the other direction does not work.
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3 Orthogonal Basis and Projection

Definition 3 Consider a pre-Hilbert spave V. Two vectors v1, v2 ∈ V are called orthogonal if
< v1, v2 >= 0

Notation: v1 ⊥ v2 Two sets v1, v2 ⊂ V are called orthogonal if ∀v1 ∈ V1, v2 ∈ V2 :< v1, v2 >= 0

Vectors are called orthogonal if additionally the two vectors have norm of 1.

A set of vectors v1, v2, · · · , vn is called orthonormal is any two vectors are orthonormal. For a set
S ⊆ V we define its orthogonal complement S⊥ as follows:

S⊥ := {v ∈ V |v ⊥ s,∀s ∈ S}

4 Orthogonal Projection

Definition 4 A ∈ L(V ) is called a projection if A2 = A.

Theorem 5 Let U be a finite-dim subspace of a pre-Hilber-space H. Then there exists a linear
projection PU : H → U , and Ker(PU ) = U⊥. PU is then called the orthogonal projection of H
on U .

Construction: Let v1, · · · , vn be an orthogonal basis of U . Define PU : V → U by PU (w) =∑n
i=1

<w,vi>
∥vi∥ vi

Remark 6 In an orthonormal basis v1, · · · , vn, the representation of a vector is given by

v =

n∑
i=1

< v, ui > ui

5 Gram-Schmidt Orthogonalization

It is a procedure that takes any basis v1, · · · , vn of a finite-dim vector space and transforms it into
another basis u1, · · · , un that is orthonormal.

Intuition: iterative procedure

Step 1: u1 = v1
∥v1∥ , U1 = span{u1}

Step k: Assume that we already have u1, u2, · · · , uk−1.

• Project vk on Uk−1 and keep "the rest":

ũk = vk − PUk−1
(vk)

• Normalize:
uk =

ũk

∥ũk∥

In practice, use Householder reflection for a numerically stable orthogonalization.
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6 Orthogonal Matrices

Definition 7 Let Q ∈ Rn×n be a matrix with orthonormal column vectors (w.r.t Euclidean inner
product). Then Q is called an orthogonal matrix.

If Q ∈ Cn and the columns are orthonormal (w.r.t the standard inner product on C), then it is called
unitary.

Examples:

• Identity: [
1 0
0 1

]
• Reflection: [

1 0
0 −1

]
• Permutation: [

0 1
1 0

]
• Rotation: [

cosθ −sinθ
sinθ cosθ

]
• Rotation in R3: 1 0 0

0 cosθ −sinθ
0 sinθ cosθ


• General rotation can be written as a product of "elementary" rotation.

Properties of orthogonal matrix Q:

• columns are orthogonal ⇔ rows are orthogonal.

• Q is always invertible, and Q−1 = QT

• Q realizes an isometry: ∀v ∈ V : ∥Qv∥ = ∥v∥.

• Q preserves angles: < Qu,Qv >=< u, v >, ∀u, v ∈ V

• |det(Q)| = 1

The respective properties also holds for unitary matrices U . (U−1 = ŪT

Theorem 8 Let S ∈ L(V ) for a real vector space V . Then the following are equivalent:

• S is an isometry: ∥Sv∥ = ∥v∥, v ∈ V .
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• There exists an orthonormal basis of V such that the matrix of S has the following form:

A =


B1 0 0 · · · 0
0 B2 0 · · · 0
0 0 B3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bn


where each B is a block, they are either a real number with value 1 or -1, or a 2 × 2 rotation
matrix.
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