CSE 840: Computational Foundations of Artificial Intelligence  February 12, 2025

Symmetric Matrices, Spectral Theorem for Symmetric Matrices,
Positive Definite Matrices, Variational Characterization of Eigenvalues

Instructor: Vishnu Boddeti Scribe: Auden Garrard and Roshan Atluri, Yuyuan Tian

1 Introduction

1.1 Symmetric Matrices

Definition: A matrix A € R™ " is called symmetric if A = AT. A matrix A € C"*" is called
Hermitian if A=4 .

Addition Info: Examples

2 3

A=[3 ]
1 -2 0
B=|-2 5 7
0 7 9

Let A € C"*" be Hermitian. Then all eigenvalues of A are real-valued. Eigenvectors
that correspond to distinct eigenvalues are orthogonal.
Proof: Let A be an eigenvalue of A with eigenvector x. Then
Ax =Xz
Mz, z) = (\x,z) = (Az, x)

Since A is Hermitian,
(Az,2) = (x, Az) = (z, \z) = N2, 7)

= Mz, z) = Xz, x)
= A=X€R (unless z = 0 vector)

= A is real.
Suppose (A1, 1) and (Mg, x2) are eigenvalue-eigenvector pairs of A. Then
Ai{z1, m2) = (Mixy, 12) = (Azy, 29) = (21, ATo)

= <$17 >\2332> = /\72<1131, 172)

Since Ay = Ay (from Hermitian property),

= A (21, 22) = Ao(z1, 22)
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0= Xi(z1,22) — Aa(x1, 22)
0= (A1 — Xo)(z1,22)
= either A\ = g or if \; 75 Ao then <.Z‘1,$2> =0

=x1 L 29

Definition: An operator T' € L(V') on a pre-Hilbert space V is called self-adjoint if
(Tu,w) = (u, Tw)

for all u,w € V.

Sometimes it is called a Hermitian operator (on C™) or a Symmetric operator (on R™).

Remark: Over C", self-adjoint operators are represented by Hermitian matrices. On R"”, a self-
adjoint operator is represented by a symmetric matrix.

Let T € L(V) be self-adjoint. Then T has at least one eigenvalue, and it is real-
valued. (This holds on both C™ and R™.)

Proof (sketch): Let n := dim V. Choose v # 0, and consider the set of vectors
v, Tv, T?*v, ..., T™
These vectors must be linearly dependent (since we have n + 1 vectors in an n-dimensional space).
So there exist scalars ag, aq,...,a, such that
agv +a1Tv+---+a,T"v=0
Now consider the polynomial with these coefficients:
ao+ a1z + az® + -+ apz™ =0
This polynomial can be factored as:

C@® +bx+er) (@2 +bxtcy)(@—A) - (x—N\p)

Quadratic terms linear terms

where the quadratic terms represent irreducible factors over R (if any), and the linear terms corre-
spond to real eigenvalues A1, ..., Ap,.

Replace by T in the polynomial expression:

O=aw+aTv+-+a,Tv=|C () ()| (T

quadratic linear

Now we can show: the quadratic terms are invertible, and we are left with (at least one) linear

factor:
0=T—-MI)--- (T = D)o
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There must exist at least one index 4 such that (7" — A;I) is not invertible.

So,
(T—XDv=0 = Tv=MN\v

= )\; is an eigenvalue of T

Addition Info: Proof that Symmetric Matrices Have Orthogonal Eigenvectors

Consider a symmetric matrix A € R™ ™, and let A\; and Ay be distinct eigenvalues of A with
corresponding eigenvectors v; and ¥, respectively. We aim to show that ¥; and ¥ are orthogonal.

From the definition of eigenvectors and eigenvalues, we have:
Aty = MUy, Aty = Ao,
Multiplying both sides of the first equation on the left by #iJ and both sides of the second equation
on the left by o7, we get:
U AT = N T2 01, U] ATy = Ao} .
Notice that each of these expressions is a scalar. Therefore,
T Avy = (07 Avy)T = 0% ATo, = o1 Aw,,
where the last equality follows from the fact that A is symmetric, i.e., A = AT,
Equating the right-hand sides of the two expressions:
ML = Aot .

Since A1 # Ao, it follows that

T30 = 0Ty = 0,

demonstrating that ¥; and ¥ are orthogonal.

1.2 Spectral Theorem for Symmetric/Hermitian Matrices

A symmetric matrix A € R"*" is orthogonally diagonalizable: there exists an orthogonal
matrix @ € R™*" and a diagonal matrix D € R™*" such that

A=QDQT

where
A 0

0 An

and

n
A=Y Naig!
=1
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where each qiqiT is a rank-1 matrix.

A Hermitian matrix A € C™*™ is unitarily diagonalizable: there exists a unitary matrix
U and a diagonal matrix D such that

A=UDU "
and the entries of D are real-valued.
Addition Info:

Proof that Hermitian Matrices are Unitarily Diagonalizable

Let uy,usg, ..., u, be an orthonormal basis of eigenvectors, and let A1, Ao, ..., A, be the corresponding
eigenvalues. Define U to be the matrix with u; as the k" column, and let A be the diagonal matrix
with A as the k' diagonal entry.

To show that U is unitary, consider the (i, j)-entry of UU*. This entry is given by the inner product
(ui,u;), which equals 1 when ¢ = j and 0 otherwise, since the eigenvectors are orthonormal. Thus,

uu*=1.
Taking the conjugate transpose of both sides gives
U'U=Uu"=1,

so we also have
U-l=u~,

and hence U is unitary.

Now, we prove that A = UAU*. Consider the effect of UAU* on an eigenvector vy = ug. We
compute:
UAU*’Uk = UAek = U)\kek = )\kUek = )\k’l)k = Avk.

Since {v1, va, ..., v, } forms a basis for C", every vector x € C™ can be written as a linear combination

of the vy. Therefore,
UAU*z = Az for all x € C™.

It follows that
A=UAU".

1.3 Positive Definite Matrices

Definition: A matrix A € R™*" is called positive definite (PD) if for all x € R™, z #£ 0,

z Az >0

For positive semi-definite (PSD) matrices, Vo € R™, z # 0,

x Az >0

8-4



Definition: A matrix A € C"*" is called a Gram matriz if there exists a set of vectors vq,...,v, €
C™ such that
aij = (vi, V)

Note: Gram matrices are Hermitian (and similarly, on R"*" Gram matrices are symmetric).

LetV:[vl vn],then
G=V'V, C=VV'

CAUTION: Over C, we have that positive definite (PD) = self-adjoint.

However, over R, this is not true!

= There are matrices which are PD but not symmetric.

=(4)

r' Az =% + 23>0 forallz#0

Example:

= A is PD but not symmetric.

However, over C, the same matrix is not PD, since 27 + 22 can be negative (not necessarily positive
definite).

Let A € C"*™ be Hermitian. Then the following are equivalent:

(i) A is positive semi-definite (PD), i.e., * Az > 0 for all x € C".
(ii) All eigenvalues of A are > 0 (> 0).
(iii) The mapping (-,-)4 : C" x C™ — C defined by
(@,y)a =7 Az

satisfies all properties of an inner product except one: if (x,z) 4 = 0, this does not imply = = 0.

(This mapping is an inner product only on a subspace.)

(iv) Aisa Gram matrix of n vectors which are not necessarily linearly independent, i.e., (which are linearly independent)

aij = (i, T;)

where z1,...,x, € C".

Addition Info:

8-5



Quadratic Form Visualization

The function above plotted is

flzy) =2 + 27

which comes from the quadratic form:

a4

Expanding this:

x? + 22

Since the function is always non-negative and only equals zero at (0,0), this confirms that A is
positive definite because all its eigenvalues are strictly positive. Geometrically, this corresponds to
a paraboloid that always opens upwards.

Additionally, the above statement indicates that if one of the eigenvalues were negative, this would
create a saddle point, breaking one of the passive variables. Finally, since all of the eigenvalues are
strictly positive, this guarantees that A is positive definite, never producing negative values.

1.4 Roots of Positive Semi-Definite Matrices

Theorem: Let A € R™ ™ be symmetric and positive semi-definite (PSD). Then there exists a
matrix B € R™*" also PSD, such that
A=p?

The matrix B is called the square root of A, denoted as

B=AY?
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Proof: By the spectral theorem,

A=UDUT
where U is orthogonal and D is a diagonal matrix with non-negative eigenvalues:
A1 0
0 An
Define
VA1 0
VD = .
0 VAn
Then set
B:=UVDU"
Addition Info:
Example
Consider the positive semi-definite matrix:
4 0
=103

The eigenvalues of A are 4 and 9, both non-negative. The square root of A is given by:

T

ool [0

1.5 Variational Characterization of Eigenvalues

which satisfies:

I
>

Definition: Let A € R"*™ be a symmetric matrix. The Rayleigh quotient R4 by

x ! Ax

Ra:R*"\ {0} = R —
AR\ {0} 5 R, 2o T2

This is called the Rayleigh coefficient of A.
Addition Info:

Example Let

Then s 1171 )
T 1 0] [1 0]
Ra() = xTAxx B [1[1)] E}] {O] N 1{1} - % =2



Let A be symmetric, and let Ay < Ay < --- < A, be the eigenvalues of A with
corresponding eigenvectors vy, ..., U,.

Then:
min R4(xz) = min zT Az = )\, attained at z = v;
z€R", |lz=1 llzll=1
max  Ry(x) = max z Az = )\,, attained at x = v,
z€R™, ||z|=1 llzll=1
Intuition: Assume A is expressed in terms of the orthonormal basis vy, ..., v,, so that
A1 0
A= .
0 An

Let y be a vector, also represented in the same basis:

Y =Y1v1 + Y202 + -+ YpUn

Then,
y Ay = Myl + Aays + -+ Ayl

Among the standard basis vectors:

1\ /o 0
o| [1 :

Y ~ b ) O
0/ \o 1

This corresponds to vy, and the value of y T Ay would be \;.

Proof (sketch): Assume we start with the standard basis. Let

be the basis transformation matrix. Since @ is orthogonal, we have
A=QTAQ

where A is diagonal.
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x1
For a vector x = | : | be a vector in the original basis, and define y := Q.

Tn

We consider the Rayleigh quotient:

Yy Ay (QT2)TAQTx)
Balo) = = a0

Since (QTx)" = 2TQ and Q is orthogonal (so QT Q = I), this becomes:

B zTQQTAQQTr 2TAx
N 2TQQ x a2z

_ Mz? 4+ Noxd + -+ Azl
[l

Hence,

min Ra(y) = min (Az] + -+ A\,27)
llyll=1 ll=ll=1

Note: @ is orthogonal, so it preserves norms.

The minimum of R4(y) is attained when

1
0
T=1. éy:QTI:m
0
with value
in RA(y) =\
llyll=1

Consider the constrained minimization problem

min R(x)
ll=|l=1
rlvg

The solution to this problem is = vq, and R(x) = Ay

Intuition: Consider the restriction of operator A to the subspace
Vit = (span{v; })*

On this subspace, A is invariant and symmetric, so we can apply the Rayleigh quotient again on
this smaller space.

Let
Vit = span{vy, vs,...,v,}
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If we apply the Rayleigh to V-, we get the next solution:

A2, V2

(Min-Max Theorem)

Let A € R"*™ be symmetric with eigenvalues
AL <A <<,

Then the k-th eigenvalue satisfies:

A= min  max Ru(x)
UCR™ zeU\{0}
dim U=k

= max min  Ry(x)
UCR"  zeU\{0}

dimU=n—k+1

Intuition: For k£ = 3:

- Consider the subspace U spanned by v1,vs,v3. As we saw before,

max Ra(x) = A3, attained by v
zeU

- Consider another subspace U spanned by vg, v19, v11,

max Ra(z) = A1
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https://rubenvannieuwpoort.nl/posts/the-spectral-theorem-for-hermitian-matrices

https://www.youtube.com/watch?v=0XLalScAMI0
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