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Symmetric Matrices, Spectral Theorem for Symmetric Matrices,
Positive Definite Matrices, Variational Characterization of Eigenvalues

Instructor: Vishnu Boddeti Scribe: Auden Garrard and Roshan Atluri, Yuyuan Tian

1 Introduction

1.1 Symmetric Matrices

Definition: A matrix A ∈ Rn×n is called symmetric if A = A⊤. A matrix A ∈ Cn×n is called
Hermitian if A = A

⊤
.

Addition Info: Examples

A =

[
2 3
3 4

]

B =

 1 −2 0
−2 5 7
0 7 9



Proposition: Let A ∈ Cn×n be Hermitian. Then all eigenvalues of A are real-valued. Eigenvectors
that correspond to distinct eigenvalues are orthogonal.

Proof: Let λ be an eigenvalue of A with eigenvector x. Then

Ax = λx

λ⟨x, x⟩ = ⟨λx, x⟩ = ⟨Ax, x⟩

Since A is Hermitian,
⟨Ax, x⟩ = ⟨x,Ax⟩ = ⟨x, λx⟩ = λ⟨x, x⟩

⇒ λ⟨x, x⟩ = λ⟨x, x⟩

⇒ λ = λ ∈ R (unless x = 0 vector)

⇒ λ is real.

Suppose (λ1, x1) and (λ2, x2) are eigenvalue-eigenvector pairs of A. Then

λ1⟨x1, x2⟩ = ⟨λ1x1, x2⟩ = ⟨Ax1, x2⟩ = ⟨x1, Ax2⟩

= ⟨x1, λ2x2⟩ = λ2⟨x1, x2⟩

Since λ2 = λ2 (from Hermitian property),

⇒ λ1⟨x1, x2⟩ = λ2⟨x1, x2⟩
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0 = λ1⟨x1, x2⟩ − λ2⟨x1, x2⟩

0 = (λ1 − λ2)⟨x1, x2⟩

⇒ either λ1 = λ2 or if λ1 ̸= λ2 then ⟨x1, x2⟩ = 0

⇒ x1 ⊥ x2

Definition: An operator T ∈ L(V ) on a pre-Hilbert space V is called self-adjoint if

⟨Tu,w⟩ = ⟨u, Tw⟩

for all u,w ∈ V .

Sometimes it is called a Hermitian operator (on Cn) or a Symmetric operator (on Rn).

Remark: Over Cn, self-adjoint operators are represented by Hermitian matrices. On Rn, a self-
adjoint operator is represented by a symmetric matrix.

Proposition: Let T ∈ L(V ) be self-adjoint. Then T has at least one eigenvalue, and it is real-
valued. (This holds on both Cn and Rn.)

Proof (sketch): Let n := dimV . Choose v ̸= 0, and consider the set of vectors

v, Tv, T 2v, . . . , Tnv

These vectors must be linearly dependent (since we have n+ 1 vectors in an n-dimensional space).

So there exist scalars a0, a1, . . . , an such that

a0v + a1Tv + · · ·+ anT
nv = 0

Now consider the polynomial with these coefficients:

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0

This polynomial can be factored as:

C(x2 + b1x+ c1) · · · (x2 + bnx+ cn)︸ ︷︷ ︸
Quadratic terms

(x− λ1) · · · (x− λm)︸ ︷︷ ︸
linear terms

where the quadratic terms represent irreducible factors over R (if any), and the linear terms corre-
spond to real eigenvalues λ1, . . . , λm.

Replace x by T in the polynomial expression:

0 = a0v + a1Tv + · · ·+ anT
nv =

C (· · · )︸ ︷︷ ︸
quadratic

(· · · )︸ ︷︷ ︸
linear

 (T )v

Now we can show: the quadratic terms are invertible, and we are left with (at least one) linear
factor:

0 = (T − λ1I) · · · (T − λmI)v
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There must exist at least one index i such that (T − λiI) is not invertible.

So,
(T − λiI)v = 0 ⇒ Tv = λiv

⇒ λi is an eigenvalue of T.

Addition Info: Proof that Symmetric Matrices Have Orthogonal Eigenvectors

Consider a symmetric matrix A ∈ Rn×n, and let λ1 and λ2 be distinct eigenvalues of A with
corresponding eigenvectors v⃗1 and v⃗2, respectively. We aim to show that v⃗1 and v⃗2 are orthogonal.

From the definition of eigenvectors and eigenvalues, we have:

Av⃗1 = λ1v⃗1, Av⃗2 = λ2v⃗2.

Multiplying both sides of the first equation on the left by v⃗T2 and both sides of the second equation
on the left by v⃗T1 , we get:

v⃗T2 Av⃗1 = λ1v⃗
T
2 v⃗1, v⃗T1 Av⃗2 = λ2v⃗

T
1 v⃗2.

Notice that each of these expressions is a scalar. Therefore,

v⃗T1 Av⃗2 = (v⃗T1 Av⃗2)
T = v⃗T2 A

T v⃗1 = v⃗T2 Av⃗1,

where the last equality follows from the fact that A is symmetric, i.e., A = AT .

Equating the right-hand sides of the two expressions:

λ1v⃗
T
2 v⃗1 = λ2v⃗

T
1 v⃗2.

Since λ1 ̸= λ2, it follows that
v⃗T2 v⃗1 = v⃗T1 v⃗2 = 0,

demonstrating that v⃗1 and v⃗2 are orthogonal.

1.2 Spectral Theorem for Symmetric/Hermitian Matrices

Theorem: A symmetric matrix A ∈ Rn×n is orthogonally diagonalizable: there exists an orthogonal
matrix Q ∈ Rn×n and a diagonal matrix D ∈ Rn×n such that

A = QDQ⊤

where

D =

λ1 0
. . .

0 λn


and

A =

n∑
i=1

λiqiq
⊤
i
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where each qiq
⊤
i is a rank-1 matrix.

Theorem: A Hermitian matrix A ∈ Cn×n is unitarily diagonalizable: there exists a unitary matrix
U and a diagonal matrix D such that

A = UDU
⊤

and the entries of D are real-valued.

Addition Info:

Proof that Hermitian Matrices are Unitarily Diagonalizable

Let u1, u2, . . . , un be an orthonormal basis of eigenvectors, and let λ1, λ2, . . . , λn be the corresponding
eigenvalues. Define U to be the matrix with uk as the kth column, and let Λ be the diagonal matrix
with λk as the kth diagonal entry.

To show that U is unitary, consider the (i, j)-entry of UU∗. This entry is given by the inner product
⟨ui, uj⟩, which equals 1 when i = j and 0 otherwise, since the eigenvectors are orthonormal. Thus,

UU∗ = I.

Taking the conjugate transpose of both sides gives

U∗U = (UU∗)∗ = I,

so we also have
U−1 = U∗,

and hence U is unitary.

Now, we prove that A = UΛU∗. Consider the effect of UΛU∗ on an eigenvector vk = uk. We
compute:

UΛU∗vk = UΛek = Uλkek = λkUek = λkvk = Avk.

Since {v1, v2, . . . , vn} forms a basis for Cn, every vector x ∈ Cn can be written as a linear combination
of the vk. Therefore,

UΛU∗x = Ax for all x ∈ Cn.

It follows that
A = UΛU∗.

1.3 Positive Definite Matrices

Definition: A matrix A ∈ Rn×n is called positive definite (PD) if for all x ∈ Rn, x ̸= 0,

x⊤Ax > 0

For positive semi-definite (PSD) matrices, ∀x ∈ Rn, x ̸= 0,

x⊤Ax ≥ 0
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Definition: A matrix A ∈ Cn×n is called a Gram matrix if there exists a set of vectors v1, . . . , vn ∈
Cn such that

aij = ⟨vi, vj⟩

Note: Gram matrices are Hermitian (and similarly, on Rn×n, Gram matrices are symmetric).

Let V =
[
v1 · · · vn

]
, then

G = V ⊤V, C = V V
⊤

CAUTION: Over C, we have that positive definite (PD) ⇒ self-adjoint.

However, over R, this is not true!

⇒ There are matrices which are PD but not symmetric.

Example:

A =

(
1 1
−1 1

)
x⊤Ax = x2

1 + x2
2 > 0 for all x ̸= 0

⇒ A is PD but not symmetric.

However, over C, the same matrix is not PD, since x2
1 + x2

2 can be negative (not necessarily positive
definite).

Theorem: Let A ∈ Cn×n be Hermitian. Then the following are equivalent:

(i) A is positive semi-definite (PD), i.e., x∗Ax ≥ 0 for all x ∈ Cn.

(ii) All eigenvalues of A are ≥ 0 (> 0).

(iii) The mapping ⟨·, ·⟩A : Cn × Cn → C defined by

⟨x, y⟩A := y⊤Ax

satisfies all properties of an inner product except one: if ⟨x, x⟩A = 0, this does not imply x = 0.

(This mapping is an inner product only on a subspace.)

(iv) A is a Gram matrix of n vectors which are not necessarily linearly independent, i.e., (which are linearly independent)

aij = ⟨xi, xj⟩

where x1, . . . , xn ∈ Cn.

Addition Info:
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Quadratic Form Visualization
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The function above plotted is

f(x, y) = x2 + 2y2

which comes from the quadratic form:

xTAx =
[
x y

] [1 0
0 2

] [
x
y

]
Expanding this:

x2 + 2y2.

Since the function is always non-negative and only equals zero at (0,0), this confirms that A is
positive definite because all its eigenvalues are strictly positive. Geometrically, this corresponds to
a paraboloid that always opens upwards.

Additionally, the above statement indicates that if one of the eigenvalues were negative, this would
create a saddle point, breaking one of the passive variables. Finally, since all of the eigenvalues are
strictly positive, this guarantees that A is positive definite, never producing negative values.

1.4 Roots of Positive Semi-Definite Matrices

Theorem: Let A ∈ Rn×n be symmetric and positive semi-definite (PSD). Then there exists a
matrix B ∈ Rn×n, also PSD, such that

A = B2

The matrix B is called the square root of A, denoted as

B = A1/2
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Proof: By the spectral theorem,
A = UDU⊤

where U is orthogonal and D is a diagonal matrix with non-negative eigenvalues:

D =

λ1 0
. . .

0 λn

 , λi ≥ 0

Define

√
D =


√
λ1 0

. . .
0

√
λn


Then set

B := U
√
DU⊤

Addition Info:

Example

Consider the positive semi-definite matrix:

A =

[
4 0
0 9

]
The eigenvalues of A are 4 and 9, both non-negative. The square root of A is given by:

B =
√
A =

[√
4 0

0
√
9

]
=

[
2 0
0 3

]
which satisfies:

B2 =

[
2 0
0 3

]2
=

[
4 0
0 9

]
= A.

1.5 Variational Characterization of Eigenvalues

Definition: Let A ∈ Rn×n be a symmetric matrix. The Rayleigh quotient RA by

RA : Rn \ {0} → R, x 7→ x⊤Ax

x⊤x

This is called the Rayleigh coefficient of A.

Addition Info:

Example Let

A =

[
2 1
1 3

]
, x =

[
1
0

]
Then

RA(x) =
x⊤Ax

x⊤x
=

[1 0]

[
2 1
1 3

] [
1
0

]
[1 0]

[
1
0

] =

[1 0]

[
2
1

]
1

=
2

1
= 2
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Proposition: Let A be symmetric, and let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A with
corresponding eigenvectors v1, . . . , vn.

Then:
min

x∈Rn, ∥x∥=1
RA(x) = min

∥x∥=1
x⊤Ax = λ1, attained at x = v1

max
x∈Rn, ∥x∥=1

RA(x) = max
∥x∥=1

x⊤Ax = λn, attained at x = vn

Intuition: Assume A is expressed in terms of the orthonormal basis v1, . . . , vn, so that

A =

λ1 0
. . .

0 λn


Let y be a vector, also represented in the same basis:

y = y1v1 + y2v2 + · · ·+ ynvn

Then,
y⊤Ay = λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n

Among the standard basis vectors: 
1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
...
0
1


the smallest result of y⊤Ay is given by choosing

y =


1
0
...
0


This corresponds to v1, and the value of y⊤Ay would be λ1.

Proof (sketch): Assume we start with the standard basis. Let

Q =

 | | |
v1 v2 · · · vn
| | |


be the basis transformation matrix. Since Q is orthogonal, we have

A = Q⊤ΛQ

where Λ is diagonal.
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For a vector x =

x1

...
xn

 be a vector in the original basis, and define y := Q⊤x.

We consider the Rayleigh quotient:

RA(y) =
y⊤Ay

y⊤y
=

(Q⊤x)⊤A(Q⊤x)

(Q⊤x)⊤(Q⊤x)

Since (Q⊤x)⊤ = x⊤Q and Q is orthogonal (so Q⊤Q = I), this becomes:

=
x⊤QQ⊤ΛQQ⊤x

x⊤QQ⊤x
=

x⊤Λx

x⊤x

=
λ1x

2
1 + λ2x

2
2 + · · ·+ λnx

2
n

∥x∥2

Hence,
min
∥y∥=1

RA(y) = min
∥x∥=1

(
λ1x

2
1 + · · ·+ λnx

2
n

)
Note: Q is orthogonal, so it preserves norms.

The minimum of RA(y) is attained when

x =


1
0
...
0

 ⇒ y = Q⊤x = v1

with value
min
∥y∥=1

RA(y) = λ1

Proposition: Consider the constrained minimization problem

min
∥x∥=1
x⊥v1

R(x)

The solution to this problem is x = v2, and R(x) = λ2

Intuition: Consider the restriction of operator A to the subspace

V ⊥
1 := (span{v1})⊥

On this subspace, A is invariant and symmetric, so we can apply the Rayleigh quotient again on
this smaller space.

Let
V ⊥
1 = span{v2, v3, . . . , vn}
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If we apply the Rayleigh to V ⊥
1 , we get the next solution:

λ2, v2

Theorem: (Min–Max Theorem)

Let A ∈ Rn×n be symmetric with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

Then the k-th eigenvalue satisfies:

λk = min
U⊂Rn

dimU=k

max
x∈U\{0}

RA(x)

= max
U⊂Rn

dimU=n−k+1

min
x∈U\{0}

RA(x)

Intuition: For k = 3:

- Consider the subspace U spanned by v1, v2, v3. As we saw before,

max
x∈U

RA(x) = λ3, attained by v3

- Consider another subspace U spanned by v9, v10, v11,

max
x∈U

RA(x) = λ11
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