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Singular Value Decomposition
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1 Singular Value Decomposition

Proposition 1 Consider A ∈ R
m×n of rank r. Then we can write A in the form

A = U · Σ · V T

where U ∈ R
m×m, V ∈ R

n×n are orthogonal matrices and Σ ∈ R
m×n is "diagonal" and exactly r of

the diagonal values σ1, σ2, · · · are non-zero.

A
︸︷︷︸

m×n

=





| | |
u1 u2 · · · um

| | |





︸ ︷︷ ︸

m×m










σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr

0 0 · · · 0










︸ ︷︷ ︸

m×n








− vT
1

−
− vT

2
−

...
− vTn −








︸ ︷︷ ︸

n×n

Proof: Construct U, V,Σ, such that A = UΣV T .

Given A ∈ R
m×n, we consider

B := ATA ∈ R
n×n

Observe: - B is symmetric:

(ATA)T = AT (AT )T = ATA

- B is positive semi-definite:

xTBx = ⟨x,Bx⟩ = ⟨x,ATAx⟩

= ⟨Ax,Ax⟩ = ∥Ax∥2 ≥ 0

So there exists an orthonormal basis of eigenvectors x1, x2, . . . , xn with eigenvalues λ1, λ2, . . . , λn ≥ 0.

Define:

• Σ = “diag(σi)” ∈ R
m×n

where σi =
√
λi.
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• U is defined as:

U =

(
1
ri

)

matrix with columns

where

ri :=
Axi

σi

• V is defined as:

V =

(
1
xi

)

matrix with xi as columns.

Now we need to show that with these definitions, we have:

A = U · Σ · V T

Sketch:

• Columns of U · Σ are given as:

σiri = σi ·
Axi

σi

= Axi

• Now multiply with V T :

– Rows of V T are the xi.

– Exploit that:

∗ If i ̸= j, then xi ⊥ xj .

∗ ∥xi∥ = 1.

– The terms consisting of i, j with i ̸= j cancel, while the terms with i = j will be 1.

Thus, we will be left with the matrix A.

□

Example:

To perform Singular Value Decomposition (SVD) for the matrix

A =

[
3 2 2
2 3 −2

]

,

let’s break it down step by step.

Step 1: Compute AAT

First, we need to calculate the matrix AAT (where AT is the transpose of matrix A):

AT =





3 2
2 3
2 −2





X-2



Now, compute AAT :

AAT =

[
3 2 2
2 3 −2

]

·





3 2
2 3
2 −2



 =

[
17 8
8 17

]

Step 2: Find the Eigenvalues of AAT

To find the eigenvalues of AAT , we solve the characteristic equation:

det(AAT − λI) = 0

det

[
17− λ 8

8 17− λ

]

= 0

(λ− 25)(λ− 9) = 0

Thus, the eigenvalues are λ1 = 25 and λ2 = 9. These eigenvalues correspond to the singular values
σ1 = 5 and σ2 = 3, since the singular values are the square roots of the eigenvalues.

Step 3: Find the Right Singular Vectors (Eigenvectors of ATA)

Next, we find the eigenvectors of ATA for λ = 25 and λ = 9.

For λ = 25:

Solve (ATA− 25I)v = 0:

ATA− 25I =





−12 12 2
12 −12 −2
2 −2 −17





Row-reducing this matrix:





1 −1 0
0 0 1
0 0 0





The eigenvector corresponding to λ = 25 is:

v1 =





1√
2
1√
2

0





For λ = 9, solving (ATA− 9I)v = 0:
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v2 =






1√
18

− 1√
18

4√
18






For the third eigenvector v3, since v3 must be perpendicular to v1 and v2:

v3 =





2

3

− 2

3
1

3





Step 4: Compute the Left Singular Vectors (Matrix U)

To compute the left singular vectors U , we use the formula ui =
1

σi

Avi. This results in:

U =

[
1√
2

1√
2

1√
2

− 1√
2

]

Step 5: Final SVD Equation

Finally, the Singular Value Decomposition of matrix A is:

A = UΣV T

Where:

U =

[
1√
2

1√
2

1√
2

− 1√
2

]

Σ =

[
5 0 0
0 3 0

]

V =





1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2

3
− 2

3

1

3





Thus, the SVD of matrix A is:

A =

[
1√
2

1√
2

1√
2

− 1√
2

] [
5 0 0
0 3 0

]




1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2

3
− 2

3

1

3





This is the result of the Singular Value Decomposition of matrix A.
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2 Key Differences between SVD & Eigenvalue Decomposition

• SVD always exists, no matter how A looks like.

• U, V are orthogonal (not true for eigenvectors in general).

• Singular values are always real and non-negative.

• If A ∈ R
n×n is symmetric, then the SVD is “nearly the same” as the eigenvalue decomposition.

• If (λi, vi) are the eigenvalue/eigenvector pairs of A, then (|λi|, vi) are the singular value/singular
vector pairs of A.

• In particular, left- and right-singular vectors are the same.

• Left-singular vectors of A are the eigenvectors of AAT .

• Right-singular vectors of A are the eigenvectors of ATA.

• If λi ̸= 0 is an eigenvalue of ATA (or equivalently, AAT ), then:

√

λi ̸= 0

is a singular value of A.

3 Matrix Norms

Given a matrix A ∈ R
m×n, we define the following norms:

• Maximum norm (Infinity norm):

∥A∥max = ∥A∥∞ = max
i,j

|aij |

• One norm (Absolute sum norm):

∥A∥1 =
∑

i,j

|aij |

• Frobenius norm:

∥A∥F =

√
∑

i,j

a2ij =
√

tr(ATA)

=
√∑

σ2

i , where σi are the singular values of A.

• Spectral norm (Operator norm):

∥A∥2 = σmax(A), where σmax is the largest singular value.

= max
x ̸=0

∥Ax∥
∥x∥

where the denominator uses the Euclidean norm on vectors in R
m. The spectral norm is

also known as the operator norm or spectral norm.

X-5



4 Rank-k Approximation of Matrices

Given a matrix A = UΣV T , where the singular values σ1, σ2, . . . are sorted in descending order.
Now we define a new matrix Ak as follows:

Ak = UkΣkV
T
k

where: - We take the first k columns of U . - The first k entries of Σ. - The first k rows of V T .

More formally:

Ak =

k∑

i=1

σiuiv
T
i

where each term σiuiv
T
i is a rank-1 matrix.

Proposition 2 Let B be any rank-k matrix B ∈ R
m×n. Then:

∥A−Ak∥F ≤ ∥A−B∥F

"Ak is the best rank-k approximation (in Frobenius norm)."

Proposition 3 For any matrix B of rank-k,

B ∈ R
m×n, ∥A−Ak∥2 ≤ ∥A−B∥2.

where ∥ · ∥2 denotes the operator norm.

"Ak is the best rank-k approximation (in operator norm)."

Figure 1: Rank-k Approximation example

5 Pseudo-Inverse of Matrix

Define: For A ∈ R
m×n, a pseudo-inverse of A is defined as the matrix A† ∈ R

n×m which satisfies
the following properties:
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• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

Intuition:

• A is a projection from R
3 → R

2:

A





x1

x2

x3



 =

(
x1

x2

)

• It cannot be inverted, obviously. (Inverting means reconstructing the original)

• But we can “make up” a reconstruction:

R : R2 → R
3

R

(
x1

x2

)

=





x1

x2

5





• Now we have:

ARA = A

which implies:

AA†A = A

Proposition 4 Let A ∈ R
m×n, and let A = UΣV T be its SVD. Then:

A† = V Σ†UT

where Σ† ∈ R
n×m and is defined as:

Σ†
ii =

{
1

Σii

, if Σii ̸= 0

0, otherwise

Σ =








σ1 . . . 0
...

. . .
...

0 . . . σr

0 . . . 0








, Σ† =








1/σ1 . . . 0
...

. . .
...

0 . . . 1/σr

0 . . . 0
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Intuition:

Assume A ∈ R
n×n is invertible, and assume it has an eigendecomposition:

A = UΛUT

• All entries of diag(Λ) are nonzero (eigenvalues are nonzero).

• The inverse of A is given by:

A−1 = UΛ−1UT

where:

Λ−1 =






1/λ1 . . . 0
...

. . .
...

0 . . . 1/λn




 , Λ =






λ1 . . . 0
...

. . .
...

0 . . . λn
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