CSE 840: Computational Foundations of Artificial Intelligence Feb 17, 2025

Singular Value Decomposition

Instructor: Vishnu Boddeti Scribe: Fangwei Zhang

1 Singular Value Decomposition

Proposition 1 Consider A € R™*™ of rank r. Then we can write A in the form
A=U-2.V"

where U € R™*™ 'V € R™"™ are orthogonal matrices and . € R™*™ is "diagonal” and exactly r of
the diagonal values 01,09, -+ are non-zero.
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Proof: Construct U,V, ¥, such that A =UXV7T.

Given A € R™*"_ we consider
B:=ATA e R™"
Observe: - B is symmetric:
(ATA)T = AT(ATYT = AT A

- B is positive semi-definite:

' Bz = (x, Bx) = (z, AT Az)

= (Azx, Az) = ||Az|* >0

So there exists an orthonormal basis of eigenvectors x1, zo, . . . , ,, with eigenvalues A1, Ao, ... A, > 0.

Define:

° Z — Lcdiag(ai)w c Rann
where o; = /.



e U is defined as:

i

U= <1> matrix with columns

where
A.Ti

gi

T .

e V is defined as:

V = <;> matrix with x; as columns.
T

Now we need to show that with these definitions, we have:

A=U-2.VT
Sketch:

e Columns of U - ¥ are given as:

e Now multiply with V7:

— Rows of VT are the z;.

— Exploit that:
* If 4 # j, then z; L x;.
* ||lxi| = 1.

— The terms consisting of 4, j with ¢ # j cancel, while the terms with ¢ = j will be 1.

Thus, we will be left with the matrix A.

Example:

To perform Singular Value Decomposition (SVD) for the matrix

3 2 2
A_[z 3 2}’

let’s break it down step by step.

Step 1: Compute AAT

First, we need to calculate the matrix AAT (where AT is the transpose of matrix A):
3

AT=12 3
2
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Now, compute AAT:

Step 2: Find the Eigenvalues of AA”

To find the eigenvalues of AAT, we solve the characteristic equation:

det(AAT —XI) =0

17-A 8
det[s 17—4_0

(A—25)(A—9) =0

Thus, the eigenvalues are A\; = 25 and Ay = 9. These eigenvalues correspond to the singular values
01 =5 and o9 = 3, since the singular values are the square roots of the eigenvalues.

Step 3: Find the Right Singular Vectors (Eigenvectors of AT A)

Next, we find the eigenvectors of AT A for A = 25 and A = 9.
For \ = 25:
Solve (ATA — 25)v = 0:

—12 12 2
ATA-25I=|12 -12 -2
2 -2 17
Row-reducing this matrix:
1 -1 0
0 0 1
0 0 0
The eigenvector corresponding to A = 25 is:
1
i
v = ﬁ
0

For A = 9, solving (ATA —9I)v = 0:
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1

%

v2 = | 18

V18

For the third eigenvector vs, since v3 must be perpendicular to vy and wvs:

2
3
V3 = | —
1
3

wn

Step 4: Compute the Left Singular Vectors (Matrix U)

To compute the left singular vectors U, we use the formula u; = %Avi. This results in:

U:

1 1
% _«%]
V2

Step 5: Final SVD Equation

Finally, the Singular Value Decomposition of matrix A is:

A=UxVT

Where:

Thus, the SVD of matrix A is:

1 1
11 - = 0
A:@@FOO]@_“? 3

This is the result of the Singular Value Decomposition of matrix A.
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2 Key Differences between SVD & Eigenvalue Decomposition

e SVD always exists, no matter how A looks like.

e U,V are orthogonal (not true for eigenvectors in general).

e Singular values are always real and non-negative.

o If A € R"*"is symmetric, then the SVD is “nearly the same” as the eigenvalue decomposition.

o If (\;, v;) are the eigenvalue/eigenvector pairs of A, then (|\;|, v;) are the singular value/singular
vector pairs of A.

e In particular, left- and right-singular vectors are the same.
o Left-singular vectors of A are the eigenvectors of AAT.
e Right-singular vectors of A are the eigenvectors of AT A.

e If \; # 0 is an eigenvalue of AT A (or equivalently, AAT), then:

Vi #0

is a singular value of A.

3 Matrix Norms

Given a matrix A € R™*" we define the following norms:

e Maximum norm (Infinity norm):

[Allmax = [[Allo = H}E}Xmij‘

e One norm (Absolute sum norm):
AL =" |ag]
1,7

e Frobenius norm:

lAllp = D a3 = /tx(ATA)
4,7
= \/Z o2, where o; are the singular values of A.

e Spectral norm (Operator norm):

lAll2 = Omax(A), where opax is the largest singular value.

A
= X
o0 el

where the denominator uses the Euclidean norm on vectors in R™. The spectral norm is
also known as the operator norm or spectral norm.
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4 Rank-k Approximation of Matrices

Given a matrix A = UXVT, where the singular values 01,09, ... are sorted in descending order.

Now we define a new matrix Ay as follows:

Ay, = UpSp ViE

where: - We take the first k& columns of U. - The first k entries of ¥. - The first k rows of V7.

More formally:

A = zk: aiuw;r
i=1
where each term UiuiviT is a rank-1 matrix.
Proposition 2 Let B be any rank-k matric B € R™*™. Then:
[A—Akllr < ||A— Bl|lr
"Ay is the best rank-k approzimation (in Frobenius norm)."
Proposition 3 For any matriz B of rank-k,

BeR™"  ||A— Agll2 <||A - B2

where || - |2 denotes the operator norm.

"Ay is the best rank-k approzimation (in operator norm)."

Original Image {Full Rank) Rank-5 A_pproximation Rank-20 Approximation  Rank-50 Ap_proximation

Figure 1: Rank-k Approximation example

5 Pseudo-Inverse of Matrix

Rank-100 Ap_p raximation

Define: For A € R™*", a pseudo-inverse of A is defined as the matrix AT € R"*™ which satisfies

the following properties:
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o AATA=A

o ATAAT = Af
o (AAN)T = AAt
o (ATA)T = ATA

Intuition:

e A is a projection from R3 — R2:

1 z
A To = ( 1)
)
x3
e It cannot be inverted, obviously. (Inverting means reconstructing the original)

e But we can “make up” a reconstruction:

R:R?* - R3

T 1
(-2
2 5
e Now we have:

ARA=A

which implies:
AATA= A
Proposition 4 Let A € R™*", and let A= UXVT be its SVD. Then:
At =vstu”

where XT € R™™™ and is defined as:

st _ s fZu#0
v 0, otherwise
g1 0 1/0’1 0
- . , =
0o ... o, 0 N
0 ... O 0 0
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Intuition:

Assume A € R™ "™ is invertible, and assume it has an eigendecomposition:

A=UAUT

e All entries of diag(A) are nonzero (eigenvalues are nonzero).

e The inverse of A is given by:

ATt =UAUT
where:

/A ... 0O A ... 0

X-8



	Singular Value Decomposition
	Key Differences between SVD & Eigenvalue Decomposition
	Matrix Norms
	Rank-k Approximation of Matrices
	Pseudo-Inverse of Matrix

