
CSE 840: Computational Foundations of Artificial Intelligence February 19, 2025

Sequences and Convergence
Instructor: Vishnu Boddeti Scribe: Zachary Perrico

1 Introduction

Calculus is fundamental for machine learning. Derivatives are often used for optimization problems
whereas integrals are used for finding the expected behavior. All of which are based on finding the
limit:

lim
b→a

(
f(b)− f(a)

b− a

)

2 Sequences

2.1 Examples

a. (an)n∈N = ((−1)n)n∈N = (−1, 1,−1, 1, ...)

b. (an)n∈N =
(
1
n

)
n∈N = (1, 1

2 , frac13, ...) limn→∞ an = 0

c. (an)n∈N = (2n)n∈N = (2, 4, 8, 16, ...)

Definition 1 A sequence (an)n∈N is called convergent to a ∈ R if ∀ε > 0 ∃N ∈ N ∀n ≥ N :
|an − a| < ε

If there is no such a ∈ R, then sequence diverges.

Definition 2 A sequence (an)n∈N is called bounded if ∃C ∈ R ∀n ∈ N : |an| ≤ C otherwise, the
sequence is unbounded.
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Fact 3 (an)n∈N convergent ⇒ (an)n∈N bounded
(an)n∈N convergent ⇒ There is only one limit limn→∞ an = a

Definition 4 If ∀ε > 0 ∃N ∈ N ∀n,m ≥ N : |an − am| < ε. then (an)n∈N is called a Cauchy
Sequence.

Fact 5 For sequence of real numbers: Cauchy sequence ⇔ convergent sequence

Proposition 6 If (an)n∈N is montonically decreasing (an+1 ≤ an ∀n) and bounded from below (the
set {an}n∈N has a lower bound), then (an)n∈N is convergent. Example subsequence: (an)n∈N = (−1)n

Subsequence: (an)n∈N = (a2k)k∈N = (1, 1, ..., 1) → 1 subsequence: (an)n∈N = (a2k+1)k∈N =
(−1,−1, ...) → −1

Definition 7 a ∈ R is called an accumulation value of (an)n∈N if there is a subsequence (ank
)K∈N

with limk→∞ ank
= a. (cluster point accumulation point, limit point, partial limit

Theorem 8 Bolzano-Weierstrass theorem. (an)n∈N bounded ⇒ (an)n∈N has an accumulation value.
(has a convergent subsequence).

Observation 9 • a sequence can have many accumulation points or no accumulation point.

• Even if the sequence has just one accumulation point, it is not necessarily a Cauchy sequence.

• If (an)n∈N converges to a, then a is the only accumulation point, and the sequence is a Cauchy
sequence.

Example: (an)n∈N = 1
n on (0, 1] (an)n∈N is Cauchy, but does not converge on (0, 1]. It does converge

to 0 on [0, 1]
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2.2 Max, Sup, Min, Inf

Assume we are on R (or more generally, on a space that has on a total ordering). Let U ⊂ R be a
subset.

• x ∈ R is called a maximum element of U if x ∈ U and ∀u ∈ U : U ≤ x. For example, 1 is the
max [0, 1] while (0,1) has no max.

• x is Called an upper bound of U if ∀u ∈ U : u ≤ x. For example, 5 is an upper bound of both
(0,1) and (0,1].

• x is called a supremum of U if it is the smallest upper bound. For example, 1 is the sup of
(0,1).

Analogously define minimum, lower bound and infimum.

A given sequence (an)n∈N could have many accumulation values where as +∞,−∞ are called im-
proper accumulation points.

Definition 10 Let (an)n∈N be a sequence of real numbers. An element a ∈ R ∪ {∞,+∞} is called:

• limit superior of (an)n∈N if a is the largest (improper) accumulation value of (an)n∈N write
a = lim supn→∞ an

• limit inferior of (an)n∈N if a is the Smallest (improper) accumulation value of (an)n∈N write
a = lim infn→∞ an

When looking at all a function such as the one shown by the points above, we can evaluate the
supremum of the limit by funding the supremum of the sequence as the starting index increases to
infinity.

Fact 11
lim sup
n→∞

an = lim
n→∞

sup{ak | k ≥ n}

lim inf
n→∞

an = lim
n→∞

inf{ak | k ≥ n}
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3 Continuity

Definition 12 A function f : X → Y between two metric spaces (x, d), (Y, d) is called continuous at x0 ∈
X if

∀ε > 0 ∃δ > 0 ∀x ∈ X : d(x, x0) < δ ⇒ d(f(x), f(x0)) < ε

Definition 13 Alternative Def: f : X → Y is called continuous at x0 if for every sequence
(an)n∈N ⊂ X we have: xn → x0 ⇒ f(xn) → f(x0)

Definition 14 A function f : X → Y is called continuous if it is continuous for every x0 ∈ X:

∀ε > 0 ∃δ > 0 ∀x ∈ X : d(x, x0) < δ ⇒ d(f(x), f(x0)) < ε

Definition 15 A function f : X → Y is called Lipschitz continuous with Lipschitz constant L if

∀x, y ∈ X : d(f(x), f(y)) ≤ L · d(x, y)

Intuition: bounded derivative

Definition 16 A function f : X → Y is called uniformly continuous if

∀x, y ∈ X : d(f(x), f(y)) ≤ L · d(x, y)

4 Important Theorems for continuous Functions

Theorem 17 Intermediate value theorem: If f : [a, b] → R is continuous, then f attains all values
between f(a) & f(b) :

∀y ∈ [f(a), f(b)]∃x ∈ [a, b] : f(x) = y
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Given ε, can choose δ that works for all x0 Given ε, cannot choose δ to be the same for all x0

Intuition: bounded derivative Intuition: unbounded derivative

Application 18 If you want to find x with f(x) = 0 find a with f(a) < 0, b with f(b) > 0 then
there must exist x ∈ [a, b] with f(x) = 0

Definition 19 Invertible Functions: D ⊂ R, f : D → R continuous, strictly monotone (a < b ⇒
f(a) < f(b)) Then f is invertible and the inverse is continuous as well.

• Invertible follows from monotonicity

• continuity of the inverse follows directly from continuity of f.

Figure 1: An example of an invertible function that is not continuous.
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A function f between two metric spaces (x, d), (y, d) is continuous if and only if pre-images of open
sets are open:

B ⊂ Y open in y ⇒ f−1(B) := {x ∈ x | f(x) ∈ B} open in x

Function: f : I → R (I ∈ R)

Continuous function: f : R → R

Idea: small changes on x-axis → small changes on y-axis

5 Sequences of functions

Consider the sequence: (f1, f2, f3, f4, ...) with members f1 : I → R, f2 : I → R, ... as show below.
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For any fixed x̃ ∈ I, we can get an ordinary sequence of real-numbers. (f1(x̃), f2(x̃), f3(x̃), f4(x̃), ...)

Definition 20 Consider functions: fn : I → R, I ⊆ R We say that the sequence (fn)n∈N converges pointwise
to f : I → R if ∀x ∈ I : fn(x) → f(x)
yn := fn(x), y = f(x)
yn → y

Example: fn, f : [0, 1] → R, fn(x) = x1/n

f(x) =

{
0 x = 0

0 otherwise

fn → f pointwise, all fn continuous, this does not imply that f is continuous

Definition 21 (fn)n∈N converges to f uniformly if ∀ε > 0 ∃N ∈ N ∀n > N∃x ∈ I : |fn(x) −
f(x)| < ε
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Intuition:

Uniform convergence: given ε, there exists N such that all fn n > N are contained within ε-tube

Close to zero, there will always be points x close to zero such that the fn(x) are not yet in E-tube.
f fr, furfs Not uniformly convergence.

Definition 22 Alternative definition: fn → f uniformly iff ∥fn − f∥∞ → 0.

Theorem 23 (uniform convergence preserves continuity) fn, f : I → R, I ⊂ R, all fn are con-
tinuous, fn → f uniformly. Then f is continuous.

6 Sample Questions

a. Show that (an)n∈N =
(
1
n

)
n∈N converges to 0 in R.
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To prove this, we must choose N such that |an − a| < ε. As such, we find that | 1n − 0| < ε,
which we rearrange to say that n > 1

ε . Therefore, if we pick N such that N > 1
ε , then we

always get |an − a| < ε.

b. Show that (an)n∈N =
(
1
n

)
n∈N does not converge in R.

There are two possible ways to prove this. The first is to pick ε = 1/2 and follow the steps
in the previous proof. The second option is to show that (1, 1, ...) and (−1,−1, ...) are both
convergent subsequences of an. Since an therefore has two different accumulation points, it
cannot converge.

c. Is the sequence Cn = 2n2+5n−1
−5n2+n+1 convergent?.

We face the initial problem that both the numerator and denominator tend to infinity, leaving
us with an indeterminate form. To circumvent this, We can multiply the numerator and
denominator by 1

n2 :

Cn =
2n2 + 5n− 1

−5n2 + n+ 1
·

1
n2

1
n2

=
2 + 5

n − 1
n2

−5 + 1
n + 1

n2

In this form, as n tends to infinity, 1/n tends to zero and we are left Cn converging to −2/5.
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