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Lecture 12: Power Series, Taylor Series
Instructor: Vishnu Boddeti Scribe: Minh Nguyen

1 Power Series

Definition 1 A series of the form

p(x) =

∞∑
n=0

anx
n

is called a power series.

An infinite sum is called a series, and it consists of terms that are powers of x.

Theorem 2 (Radius of Convergence) For every power series

p(x) =

∞∑
n=0

anx
n

there exists a constant r, 0 ≤ r ≤ ∞, called the radius of convergence such that:

• The series converges absolutely for all x with |x| < r (means that
∑∞

n=0 an|x|n converges, the
sequence of partial sums PN (x) :=

∑N
n=0 an|x|n converges "in the usual sense" as N → ∞).

• Unclear what happens when |x| = r.

• If |x| < r, the series even converges uniformly.

The radius of convergence only depends on the sequence (an)n and can be computed by various
formulae (if it exists):

• γ = 1
L where L = lim supn→∞ (|an|)1/n

• γ = limn→∞

∣∣∣ an

an+1

∣∣∣
Example 3 Consider the power series:

p(x) =

∞∑
n=0

ncxn for some constant c.

The radius of convergence is given by:

γ = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

nc

(n+ 1)c
= lim

n→∞

(
n

n+ 1

)c

= 1.
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Case 1 For c = −1:
∞∑

n=1

1

n
xn,

the radius of convergence is r = 1.

• For x = +1, the series diverges:

∞∑
n=1

1

n
· xn =

∞∑
n=1

1

n
· 1n =

∞∑
n=1

1

n
→ ∞.

• For x = −1, the series converges.

• For x > 1, the series diverges.

Case 2 For c = 0:
∞∑

n=0

ncxn =
∞∑

n=0

xn,

the series diverges for |x| = r (both x = 1 and x = −1).

Example 4 Exponential Series:

exp(x) =

∞∑
n=0

xn

n!

has a radius of convergence r = ∞, since

lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

(n+ 1)!

n!
= n+ 1 → ∞.

Example 5 The series:
∞∑

n=0

n!xn

has a radius of convergence r = 0, since

lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
→ 0.

From Power Series to Taylor Series

Observation 6 Given a power series:

f(x0 + h) =

∞∑
n=0

anh
n,

its derivative is:

f ′(x0 + h) = (a0 + a1h+ a2h
2 + · · · )′ = a1 + 2a2h+ 3a3h

2 + · · · =
∞∑

n=1

n · anhn−1.
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For higher-order derivatives of the power series:

f (k)(x0 + h) =

∞∑
n=k

an
(
n · (n− 1) · (n− 2) · · · (n− k + 1)

)
hn−k.

In particular, we have:

f (k)(x0) = ak · k! ⇒ ak =
f (k)(x0)

k!
.

Theorem 7 Let f(x0 + h) =
∑∞

n=0 anh
n with r > 0. Then for h with |h| < r, we have:

f(x0 + h) =

∞∑
n=0

f (n)(x0)

n!
hn.

Remark 8 Intuition: Start with a power series that converges. Then we have a nice formula that
expresses the coefficients in terms of the derivatives of the function.

Question

Does the theorem hold the other way around? That is, given any function (possibly with nice
assumptions), can we simply build the series:

∞∑
n=0

f (n)(x0)

n!
hn

and "hope" that it converges to the function f(x)?

2 Taylor Series

Intuition of Taylor’s Theorem

−1 1 2 3

−2

−1

1

2

3

x0 Expansion Point

x

f(x)
f(x) - Original Function
Linear Approximation

Quadratic Approximation
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• Linear Approximation: f(x0 + h) = f(x0) + f ′(x0) · h + r(h) · h, where x = x0 + h and

r(h)
h→0−−−→ 0.

• Quadratic Approximation: f(x0 + h) = f(x0) + f ′(x0) · h + 1
2f

′′(x0) · h2 + r(h) · h2, where

r(h)
h→0−−−→ 0.

Theorem 9 Let I ⊂ R be an open interval, and f : I → R. Suppose f ∈ Cn+1([a, b]) and x0 ∈ I.
Define:

Tn(x0, h) :=

n∑
k=0

f (k)(x0)

k!
· hk (Taylor series up to degree n).

Rn(x0, h) :=

∫ x0+h

x0

(x+ h− t)n

n!
f (n+1)(t) dt (Remainder term).

Then:
f(x0 + h) = Tn(x0, h) +Rn(x0, h).

Proof Sketch: The proof follows from the fundamental theorem of calculus and pro-
ceeds by induction on n.

• Base case (n = 0): We need to prove:

f(x0 + h) = f(x0) +

∫ x0+h

x0

f ′(t) dt.

This is equivalent to the fundamental theorem of calculus:∫ b

a

F ′(x) dx = F (b)− F (a).

• Inductive step (n → n+ 1): Consider the function:

F (x0 + h) =
(x0 + h− t)n+1

(n+ 1)!
f (n+1)(t).

The proof proceeds by integrating and applying the fundamental theorem of calcu-
lus.

• Take its derivative.

• Integrate and exploit fundamental theorem.

△

Theorem 10 (Taylor’s Theorem with Lagrange Remainder) Let I ⊂ R be an interval, f :
I → R, and f ∈ Cn+1(I), x0 ∈ I. If h ∈ R such that x0 + h ∈ I. Then:

f(x0 + h) =

n∑
k=0

f (k)(x0)

k!
· hk +Rn(h),
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where the first part is n-th order Taylor polynomial, and Rn(h) is the remainder term of order
n. There exists ξ with ξ ∈ (x0, x0 + h) (or ξ ∈ (x0 + h, x0)) such that:

Rn(h) =
f (n+1)(ξ)

(n+ 1)!
· hn+1.

Often, this is written as:

f(x0 + h) =

n∑
k=0

f (k)(x0)

k!
· hk +O(hn+1),

or, with x = x0 + h:

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k +O((x− x0)
n+1).

Proof of Theorem 10:

Fn,h(t) :=

n∑
k=0

f (k)(t)

k!
(x0 + h− t)k,

Note:

Fn,h(x0) = Tn(x0, h), Fn,h(x0 + h) = f(x0 + h)

Define:
gn,h(t) := (x0 + h− t)n+1, g′n,h(t) = −(n+ 1)(x0 + h− t)n

Generalized Mean Value Theorem

Using the generalized mean value theorem, we have:

Fn,h(x0 + h)− Fn,h(x0)

gn,h(x0 + h)− gn,h(x0)
=

F ′
n,h(ξ)

g′n,h(ξ)
,

where ξ ∈ (x0, x0 + h).

Replacing Fn,h(x0 + h) with f(x0 + h), we have:

f(x0 + h)− Tn(x0, h) = (gn,h(x0 + h)− gn,h(x0)) ·
F ′
n,h(ξ)

g′n,h(ξ)

=
hn+1 · F ′

n,h(ξ)

(n+ 1) · (h+ x0 − ξ)n

Left clause:

f(x0 + h)− Tn(x0, h) = F ′
n,h(t)

=
d

dt

n∑
k=0

f (k)(t)

k!
(h+ x0 − t)k

=

n∑
k=0

f (k+1)(t)

k!
(h+ x0 − t)k −

n∑
k=1

f (k)(t)

(k − 1)!
(h+ x0 − t)k−1

=
f (n+1)(t)

n!
(h+ x0 − t)n
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Substituting to right clause:

f(x0 + h)− Tn(x0, h) =
hn+1 · f(n+1)(ξp)

n! · (h+ x0 − ξ)n

(n+ 1) · (h+ x0 − ξ)n

=
hn+1 · f (n+1)(ξ)

(n+ 1)!

Result:

f(x0 + h) = Tn(x0, h) +
hn+1 · f (n+1)(ξ)

(n+ 1)!

□

Theorem 11 Let f ∈ C∞(I), x0 ∈ I, and h ∈ R such that x0 + h ∈ I. Define

T (x0, h) := lim
n→∞

Tn(x0, h) =

∞∑
n=0

f (n)(x0)

n!
· hn.

Then we have f(x) = T (x) if Rn(x0, h)
n→∞−−−−→ 0.

For example, this is the case if there exist constants α, c > 0 such that∣∣∣∣f (n)(t)

f(t)

∣∣∣∣ ≤ α · cn, ∀t ∈ I, ∀n ∈ N.

This follows directly from the Lagrangian remainder.

Examples

• Exponential series:

exp(x) =

∞∑
n=0

xn

n!
(Power series with r = ∞)

The exponential function always coincides with its Taylor series.

Other examples include sin, cos, polynomials, and power series (analytic functions).

• f(x) = log(x+ 1), Taylor series around zero.

To prove: The convergence radius for the Taylor series is r = 1. For x outside of (−1, 1), the
Taylor series does not make sense at all.

•

f(x) =

{
exp

(
− 1

x2

)
if x ̸= 0,

0 if x = 0.

This function has the peculiar property that for all n ∈ N:

f (n)(0) = 0.

Consider the Taylor series about x0 = 0. All terms will be zero, i.e., ∀n : Tn(0, h) = 0 and r = ∞.

f(x0 + h) = Tn(x0, h) +Rn(x0, h)
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Tn(x0 = 0, h) = 0 but f(0 + h) = exp

(
− 1

h2

)
Taylor series around x0 = 0 is zero. Function value around x0 = 0 is not zero.

∀(x0 + h) ̸= 0, Tn(x0, h) ̸= f(x0 + h)

2.1 Taylor Series in Deep Learning

Taylor series can be used to approximate activation functions in deep learning.

• Softmax Activation:
softmax(zi) =

ezi∑K
j=1 e

zj

Taylor expansions can approximate the exponential terms for efficient computation. The power
series for ex is:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

By substituting the power series expansion of ezi and ezj , we can approximate the softmax
function:

softmax(zi) ≈
1 + zi +

z2
i

2! +
z3
i

3! + · · ·∑K
j=1

(
1 + zj +

z2
j

2! +
z3
j

3! + · · ·
)

• Sigmoid Activation:

σ(x) =
1

1 + e−x
≈ 1

2
+

x

4
− x3

48
+ · · ·

• Tanh Activation:

tanh(x) =
ex − e−x

ex + e−x
≈ x− x3

3
+

2x5

15
− · · ·

• ReLU Activation:
ReLU(x) = max(0, x)

(No Taylor expansion needed, but approximations may be used for variations like Leaky ReLU.)

These approximations simplify calculations, especially in resource-constrained environments.
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