CSE 840: Computational Foundations of Artificial Intelligence March 10, 2025 Lecture 12: Power Series, Taylor Series Instructor: Vishnu Boddeti Scribe: Minh Nguyen

1 Power Series

Definition 1 A series of the form

$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$

is called a power series.

An infinite sum is called a **series**, and it consists of terms that are **powers** of x.

Theorem 2 (Radius of Convergence) For every power series

$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$

there exists a constant $r, 0 \le r \le \infty$, called the radius of convergence such that:

- The series converges **absolutely** for all x with |x| < r (means that $\sum_{n=0}^{\infty} a_n |x|^n$ converges, the sequence of partial sums $P_N(x) := \sum_{n=0}^{N} a_n |x|^n$ converges "in the usual sense" as $N \to \infty$).
- **Unclear** what happens when |x| = r.
- If |x| < r, the series even converges uniformly.

The radius of convergence only depends on the sequence $(a_n)_n$ and can be computed by various formulae (if it exists):

- $\gamma = \frac{1}{L}$ where $L = \limsup_{n \to \infty} (|a_n|)^{1/n}$
- $\gamma = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

Example 3 Consider the power series:

$$p(x) = \sum_{n=0}^{\infty} n^c x^n$$
 for some constant c.

The radius of convergence is given by:

$$\gamma = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n^c}{(n+1)^c} = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^c = 1.$$

Case 1 <u>For c = -1:</u>

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n,$$

the radius of convergence is r = 1.

• For x = +1, the series diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n} \cdot x^n = \sum_{n=1}^{\infty} \frac{1}{n} \cdot 1^n = \sum_{n=1}^{\infty} \frac{1}{n} \to \infty.$$

- For x = -1, the series converges.
- For x > 1, the series diverges.

Case 2 <u>For c = 0:</u>

$$\sum_{n=0}^{\infty} n^c x^n = \sum_{n=0}^{\infty} x^n,$$

the series diverges for |x| = r (both x = 1 and x = -1).

Example 4 Exponential Series:

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

has a radius of convergence $r = \infty$, since

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} = n+1 \to \infty.$$

Example 5 The series:

$$\sum_{n=0}^{\infty} n! \, x^n$$

has a radius of convergence r = 0, since

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} \to 0.$$

From Power Series to Taylor Series

Observation 6 Given a power series:

$$f(x_0+h) = \sum_{n=0}^{\infty} a_n h^n,$$

its derivative is:

$$f'(x_0+h) = (a_0 + a_1h + a_2h^2 + \dots)' = a_1 + 2a_2h + 3a_3h^2 + \dots = \sum_{n=1}^{\infty} n \cdot a_nh^{n-1}$$

For higher-order derivatives of the power series:

$$f^{(k)}(x_0+h) = \sum_{n=k}^{\infty} a_n \big(n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) \big) h^{n-k}.$$

In particular, we have:

$$f^{(k)}(x_0) = a_k \cdot k! \quad \Rightarrow \quad \left| a_k = \frac{f^{(k)}(x_0)}{k!} \right|$$

Theorem 7 Let $f(x_0 + h) = \sum_{n=0}^{\infty} a_n h^n$ with r > 0. Then for h with |h| < r, we have:

$$f(x_0 + h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} h^n.$$

Remark 8 Intuition: Start with a power series that converges. Then we have a nice formula that expresses the coefficients in terms of the derivatives of the function.

Question

Does the theorem hold the other way around? That is, given any function (possibly with nice assumptions), can we simply build the series:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} h^n$$

and "hope" that it converges to the function f(x)?

2 Taylor Series

Intuition of Taylor's Theorem

- Linear Approximation: $f(x_0 + h) = f(x_0) + f'(x_0) \cdot h + r(h) \cdot h$, where $x = x_0 + h$ and $r(h) \xrightarrow{h \to 0} 0$.
- <u>Quadratic Approximation:</u> $f(x_0 + h) = f(x_0) + f'(x_0) \cdot h + \frac{1}{2}f''(x_0) \cdot h^2 + r(h) \cdot h^2$, where $r(h) \xrightarrow{h \to 0} 0$.

Theorem 9 Let $I \subset \mathbb{R}$ be an open interval, and $f : I \to \mathbb{R}$. Suppose $f \in C^{n+1}([a,b])$ and $x_0 \in I$. Define:

$$\begin{split} T_n(x_0,h) &:= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot h^k \quad (Taylor \ series \ up \ to \ degree \ n). \\ R_n(x_0,h) &:= \int_{x_0}^{x_0+h} \frac{(x+h-t)^n}{n!} f^{(n+1)}(t) \ dt \quad (Remainder \ term). \end{split}$$

Then:

$$f(x_0 + h) = T_n(x_0, h) + R_n(x_0, h).$$

Proof Sketch: The proof follows from the fundamental theorem of calculus and proceeds by induction on n.

• Base case (n = 0): We need to prove:

$$f(x_0 + h) = f(x_0) + \int_{x_0}^{x_0 + h} f'(t) dt.$$

This is equivalent to the fundamental theorem of calculus:

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a).$$

• Inductive step $(n \rightarrow n+1)$: Consider the function:

$$F(x_0 + h) = \frac{(x_0 + h - t)^{n+1}}{(n+1)!} f^{(n+1)}(t).$$

The proof proceeds by integrating and applying the fundamental theorem of calculus.

- Take its derivative.
- Integrate and exploit fundamental theorem.

 \triangle

Theorem 10 (Taylor's Theorem with Lagrange Remainder) Let $I \subset \mathbb{R}$ be an interval, $f : I \to \mathbb{R}$, and $f \in C^{n+1}(I)$, $x_0 \in I$. If $h \in \mathbb{R}$ such that $x_0 + h \in I$. Then:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot h^k + R_n(h),$$

where the first part is **n-th order Taylor polynomial**, and $R_n(h)$ is the remainder term of order n. There exists ξ with $\xi \in (x_0, x_0 + h)$ (or $\xi \in (x_0 + h, x_0)$) such that:

$$R_n(h) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot h^{n+1}.$$

Often, this is written as:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot h^k + O(h^{n+1}),$$

or, with $x = x_0 + h$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + O((x - x_0)^{n+1}).$$

Proof of Theorem 10:

$$F_{n,h}(t) := \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x_0 + h - t)^k,$$

Note:

$$F_{n,h}(x_0) = T_n(x_0, h), \quad F_{n,h}(x_0 + h) = f(x_0 + h)$$

Define:

$$g_{n,h}(t) := (x_0 + h - t)^{n+1}, \quad g'_{n,h}(t) = -(n+1)(x_0 + h - t)^n$$

Generalized Mean Value Theorem

Using the generalized mean value theorem, we have:

$$\frac{F_{n,h}(x_0+h) - F_{n,h}(x_0)}{g_{n,h}(x_0+h) - g_{n,h}(x_0)} = \frac{F'_{n,h}(\xi)}{g'_{n,h}(\xi)},$$

where $\xi \in (x_0, x_0 + h)$.

Replacing $F_{n,h}(x_0 + h)$ with $f(x_0 + h)$, we have:

$$f(x_0 + h) - T_n(x_0, h) = (g_{n,h}(x_0 + h) - g_{n,h}(x_0)) \cdot \frac{F'_{n,h}(\xi)}{g'_{n,h}(\xi)}$$
$$= \frac{h^{n+1} \cdot F'_{n,h}(\xi)}{(n+1) \cdot (h+x_0 - \xi)^n}$$

Left clause:

$$f(x_0 + h) - T_n(x_0, h) = F'_{n,h}(t)$$

= $\frac{d}{dt} \sum_{k=0}^n \frac{f^{(k)}(t)}{k!} (h + x_0 - t)^k$
= $\sum_{k=0}^n \frac{f^{(k+1)}(t)}{k!} (h + x_0 - t)^k - \sum_{k=1}^n \frac{f^{(k)}(t)}{(k-1)!} (h + x_0 - t)^{k-1}$
= $\frac{f^{(n+1)}(t)}{n!} (h + x_0 - t)^n$

Substituting to right clause:

$$f(x_0+h) - T_n(x_0,h) = \frac{h^{n+1} \cdot \frac{f^{(n+1)}(\xi_p)}{n!} \cdot (h+x_0-\xi)^n}{(n+1) \cdot (h+x_0-\xi)^n}$$
$$= \frac{h^{n+1} \cdot f^{(n+1)}(\xi)}{(n+1)!}$$

Result:

$$f(x_0 + h) = T_n(x_0, h) + \frac{h^{n+1} \cdot f^{(n+1)}(\xi)}{(n+1)!}$$

г	_	_	_	
L				
L				
L				

Theorem 11 Let $f \in C^{\infty}(I)$, $x_0 \in I$, and $h \in \mathbb{R}$ such that $x_0 + h \in I$. Define

$$T(x_0,h) := \lim_{n \to \infty} T_n(x_0,h) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot h^n.$$

Then we have f(x) = T(x) if $R_n(x_0, h) \xrightarrow{n \to \infty} 0$.

For example, this is the case if there exist constants $\alpha, c > 0$ such that

$$\left|\frac{f^{(n)}(t)}{f(t)}\right| \le \alpha \cdot c^n, \quad \forall t \in I, \quad \forall n \in \mathbb{N}.$$

This follows directly from the Lagrangian remainder.

Examples

• Exponential series:

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (Power series with $r = \infty$)

The exponential function always coincides with its Taylor series.

Other examples include sin, cos, polynomials, and power series (analytic functions).

• $f(x) = \log(x+1)$, Taylor series around zero.

To prove: The convergence radius for the Taylor series is r = 1. For x outside of (-1, 1), the Taylor series does not make sense at all.

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

This function has the peculiar property that for all $n \in \mathbb{N}$:

$$f^{(n)}(0) = 0.$$

Consider the Taylor series about $x_0 = 0$. All terms will be zero, i.e., $\forall n : T_n(0, h) = 0$ and $r = \infty$.

$$f(x_0 + h) = T_n(x_0, h) + R_n(x_0, h)$$

$$T_n(x_0 = 0, h) = 0$$
 but $f(0+h) = \exp\left(-\frac{1}{h^2}\right)$

Taylor series around $x_0 = 0$ is zero. Function value around $x_0 = 0$ is not zero.

$$\forall (x_0 + h) \neq 0, \quad T_n(x_0, h) \neq f(x_0 + h)$$

2.1 Taylor Series in Deep Learning

Taylor series can be used to approximate activation functions in deep learning.

• Softmax Activation:

$$\operatorname{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

Taylor expansions can approximate the exponential terms for efficient computation. The power series for e^x is:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

By substituting the power series expansion of e^{z_i} and e^{z_j} , we can approximate the softmax function:

softmax
$$(z_i) \approx \frac{1 + z_i + \frac{z_i^2}{2!} + \frac{z_i^3}{3!} + \cdots}{\sum_{j=1}^{K} \left(1 + z_j + \frac{z_j^2}{2!} + \frac{z_j^3}{3!} + \cdots\right)}$$

• Sigmoid Activation:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \approx \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48} + \cdots$$

• Tanh Activation:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \approx x - \frac{x^3}{3} + \frac{2x^5}{15} - \cdots$$

• ReLU Activation:

$$\operatorname{ReLU}(x) = \max(0, x)$$

(No Taylor expansion needed, but approximations may be used for variations like Leaky ReLU.)

These approximations simplify calculations, especially in resource-constrained environments.