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1 Introduction

Measure theory serves as the mathematical foundation for probability, real analysis, and integration.
At its core lies the concept of a σ-algebra, a structured collection of subsets that ensures measurability
and enables the rigorous definition of measures.

A σ-algebra provides the necessary framework for defining measurable spaces, allowing for the as-
signment of measures in a consistent manner. This structure is fundamental in handling infinite
processes, such as countable unions and intersections, which play a crucial role in probability theory
and real analysis.

The development of Lebesgue integration builds upon the concept of σ-algebras, addressing limita-
tions in the Riemann integral by allowing the integration of a broader class of functions. These ideas
are essential in understanding measurable functions, probability spaces, and advanced mathematical
tools used in modern applications, including artificial intelligence and statistical modeling.

2 Riemann Integral

The Riemann integral sums function values over subintervals of a domain to approximate the
area under the curve. It partitions the domain [a,b] into subintervals and sums up function values
multiplied by interval widths. The Riemann integral is defined as:∫ b

a

f dt ≈
∑
k

vol(Ik) · f(mk), where vol(Ik) = xk+1 − xk. (1)
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2.1 Problems with Riemann Integral

• Difficult to extend to higher dimensions: Partitioning becomes more complicated in
higher dimensions since integration involves summing over volumes.

• Dependence on continuity: If a function has too many discontinuities, the function values
fluctuate wildly, making it impossible to approximate the area under the curve with sums.

• Limit processes issue: The interchange of limit and integration is not always valid in
Riemann integration. If the sequence of functions fn(x) does not converge uniformly, the
two sides of the equation may yield different results.

lim
n→∞

∫ b

a

fn(x)dx
?
=

∫ b

a

lim
n→∞

fn(x)dx

3 Lebesgue Integrals

The Lebesgue integral generalizes the Riemann integral by measuring the contribution of function
values based on the measure of the subset where they occur, rather than summing over fixed
partitions of the domain.

Instead of dividing the x-axis into intervals (as in Riemann integration), Lebesgue integration groups
together points where the function takes similar values and integrates over those sets.

For example, if f is a constant function over a measurable subset A, its integral is computed as:

∫
A

f dµ = c · µ(A), if f(x) = c for all x ∈ A.

This perspective allows us to integrate more general functions, including those with infinitely
many discontinuities (e.g., the indicator function of rationals in [0, 1]). However, for a function f to
be Lebesgue integrable, it must be measurable and satisfy:

∫
|f | dµ < ∞. (2)
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The Lebesgue integral is particularly useful in probability theory, functional analysis, and modern
applications of machine learning, where handling measure-theoretic probability spaces is essential.

4 Definition of σ-Algebra

Definition 1 Let X be a set, and let P(X) be its power set. A collection of subsets A ⊆ P(X) is
called a σ-algebra if:

• ∅, X ∈ A.

• If A ∈ A, then Ac := X \A ∈ A.

• If Ai ∈ A for all i ∈ N, then
⋃∞

i=1 Ai ∈ A.

4.1 Role in Probability Theory

A σ-algebra is a collection of subsets closed under countable set operations, providing the structure
needed to define a probability measure. This allows for the formal and consistent assignment of
probabilities to events, which is essential for solving numerous real-world problems.

4.2 Example: Probability Spaces

In a probability space, the σ-algebra represents all possible events for which we can assign probabil-
ities. For instance, consider a fair six-sided die roll, where the sample space is:

Ω = {1, 2, 3, 4, 5, 6}.

The power set P(Ω) is the largest possible σ-algebra, containing all subsets of Ω, but a more practical
σ-algebra might include only meaningful events such as:

A = {∅,Ω, {1, 3, 5}, {2, 4, 6}}.

This σ-algebra allows us to assign probabilities, such as:

P ({1, 3, 5}) = 3

6
, P ({2, 4, 6}) = 3

6
.

Understanding the structure of σ-algebras ensures that probability assignments remain consistent.
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4.3 Applications in Machine Learning

σ-algebras play a critical role in defining probability spaces, which are essential for modeling uncer-
tainty and randomness in machine learning. In probabilistic graphical models, σ-algebras formalize
dependencies between random variables, enabling the computation of joint and conditional prob-
abilities. This structure is crucial for algorithms that perform inference and learning in complex
models.

5 Measurable Spaces

Definition 2 A measurable space is a set X with a σ-algebra A over X. It is denoted as (X,A),
and the sets in A are called A-measurable sets.

5.1 Examples

• Smallest σ-algebra: {∅, X}.

• Largest σ-algebra: Power set P(X).

6 Intersection of σ-Algebras

Definition 3 Let Ai be σ-algebras on X, indexed by i ∈ I. Then their intersection⋂
i∈I

Ai (3)

is also a σ-algebra on X.

7 Generated σ-Algebra

Definition 4 For M ⊆ P(X), there is a smallest σ-algebra that contains M. This is called the
σ-algebra generated by M:

σ(M) :=
⋂

{A | M ⊆ A,A is a σ-algebra}. (4)

7.1 Example

Let X = {a, b, c, d} and M = {{a}, {b}}. Then the generated σ-algebra is:

σ(M) = {∅, X, {a}, {b}, {a, b}, {b, c, d}, {a, c, d}, {c, d}}.
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8 Borel σ-Algebra

Definition 5 Let (X, τ) be a topological space. This means:

• X can be a metric space, meaning it has a notion of distance.

• X can be a subset of Rn.

• The collection of open sets in X defines the topology τ .

The Borel σ-algebra on X, denoted as B(X), is the σ-algebra generated by the open sets of X:

B(X) := σ(τ). (5)

9 Measures

Definition 6 Let (X,A) be a measurable space. A function µ : A → [0,∞] is called a measure if
it satisfies:

• (a) µ(∅) = 0.

• (b) (Countable Additivity) For any sequence of pairwise disjoint sets Ai ∈ A, we have:

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai), where Ai ∩Aj = ∅ for i ̸= j. (6)

This property ensures that measures assign values consistently over countable unions.

Definition 7 A measure space is a measurable space (X,A) equipped with a measure µ. It is
denoted as (X,A, µ).
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9.1 Examples

• (a) Counting measure: Assigns a value equal to the number of elements in A, or infinity if
A is infinite. It is useful in discrete probability spaces, such as analyzing datasets where each
element is counted.

If X,A = P(X), define µ(A) as:

µ(A) =

{
#A, if A has finitely many elements
∞, else

(7)

Calculation rules in [0,∞]:

• x+∞ = ∞ for all x ∈ [0,∞].

• x · ∞ = ∞ for all x ∈ [0,∞].

• 0 · ∞ = 0 (in most cases in measure theory).

• (b) Dirac measure: Assigns measure 1 to a single point p and 0 elsewhere, behaving like
a "spike" of probability at p. In machine learning, Dirac measures appear in reinforcement
learning, where deterministic policies can be represented using Dirac delta functions.

Given p ∈ X, define δp(A) as:

δp(A) =

{
1, p ∈ A

0, else
(8)

• (c) Lebesgue measure: Extends the concept of length, area, and volume in Rn, ensur-
ing translation invariance. Many probability distributions (e.g., Gaussian, Exponential) are
defined using Lebesgue measures, allowing integration over continuous spaces.

Define a measure on X = Rn such that:

µ([0, 1]n) = 1, µ(x+A) = µ(A) ∀x ∈ Rn. (9)

(σ-algebra ̸= the power set)
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• (d) A More Useful Class of Measures: Let X = R, and let A be the Borel σ-algebra. Let
F : R → R is a monotonically increasing, continuous function.

Define a measure µF on (R,A) by setting:

µF (S) = inf


∞∑
j=1

(F (bj)− F (aj)) | S ⊆
∞⋃
j=1

(aj , bj ]

 . (10)

This measure is defined by covering S using intervals and assigning an "elementary volume"
F (b)− F (a) to each interval. The best covering is taken using the infimum.

10 Null Sets and Almost Everywhere

Definition 8 A subset N ∈ A is called a null set if µ(N) = 0. A property holds almost every-
where if it holds for all x ∈ X except for x in a null set N . In probability theory, this is referred to
as almost surely.
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