1 Linear Mapping

Definition 1 Let U, V be vector spaces over the same field F. A mapping $T : U \to V$ is called a linear map if $\forall u_1, u_2 \in U$ and $\lambda \in F$:

$$T(u_1 + u_2) = T(u_1) + T(u_2)$$
$$T(\lambda u_1) = \lambda T(u_1).$$

The set of all linear mappings from $U \to V$ is denoted is denoted $\mathcal{L}(U, V)$. If U = V, then we denote $\mathcal{L}(U)$

Examples

- The zero map $0: V \to W$, mapping every element $v \in V$ to $0 \in W$, is linear.
- The identity map $I: V \to V$, defined as Iv = v, is linear.
- None linear, For example, the exponential function $f(x) = e^x$ is not linear since $e^{2x} \neq 2e^x$.
- None linear, the function $f: F \to F$ given by f(x) = x 1 is not linear since:

$$f(x+y) = (x+y) - 1 \neq (x-1) + (y-1) = f(x) + f(y).$$

Definition 2 $T \in \mathcal{L}(U, V)$. Then Kernel of T (null-space of T) is defined as

$$ker(T) := null(T) := \{ u \in U | T_u = 0 \}$$

Proposition 3

- ker(T) is a subspace of U
- T injective if and only if kern(T) = 0

Definition 4 The range of T (image of T) is defined as

$$\operatorname{range}(T) := \operatorname{image}(T) := \{T_u | u \in U\}$$

Proposition 5

- The range is always a subspace of V
- T is subjective if and only if range(T) = V

Definition 6 Let v' be any subset of V i.e $v' \subset$ The pre-image of v' is defined as

$$T^{-1}(v') := \{ u \in U | T_u \in v' \}$$

Proposition 7 If $v' \subset V$ is a subspace of V then $T^{-1}(v' \text{ is a subspace of } U)$

Theorem 8 Let V be a finite-dimensional vector space, W be any vector space, and $T \in \mathcal{L}(V, W)$. Let (u_1, \ldots, u_n) be a basis of ker $(T) \subset V$. Let (w_1, \ldots, w_m) be a basis of range $(T) \subset W$. Then:

$$u_1, \ldots, u_n, T^{-1}(w_1), \ldots, T^{-1}(w_m) \subset V$$

form a basis of V. In particular:

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{range}(T)).$$

Proof: Denote $T^{-1}(w_1) = z_1, \ldots, T^{-1}(W_m) = Z_m$ Step 1: $V \subset span\{u_1, \ldots, u_2, z_1; \ldots, z_m\}$ Step One: Let $\vec{v} \in V$ consider $T_v \in range(T)$; Reminder $\vec{v_1}, \ldots, \vec{v_n}$ are basis of ker(T)

$$\Rightarrow \exists \lambda_1, \dots, \lambda_m s.t.$$

$$T_v = \lambda_1 w_1 + \lambda_2 w_2 + \dots \lambda_m W_m$$

$$= \lambda_1 T(z_1) + \lambda_2 T(z_2) \dots \lambda_m z_m$$

$$= T(\lambda_1 z_1 + \lambda_2 z_2 + \dots \lambda_m z_m)$$

$$\Rightarrow Tv - T(\lambda_1 z_1 + \lambda_2 z_2 + \dots \lambda_m z_m) = 0$$

$$\Rightarrow T(\underbrace{v - (\lambda_1 z_1 + \lambda_2 z_2 + \dots + \lambda_m z_m)}_{\in \ker(T)} = 0$$

$$e^{\ker(T)}$$

$$\Rightarrow \exists \mu_1, \dots \mu_m s.t.$$

$$v - (\lambda_1 z_1 + \lambda_2 z_2 + \dots + \lambda_m z_m) = \mu_1 u_1 + \mu_2 u_2 + \dots + \mu_n u_n$$

$$\Rightarrow v = \lambda_1 z_1 + \lambda_2 z_2 + \dots + \lambda_m z_m + \mu_1 u_1 + \mu_2 u_2 + \dots + \mu_n u_n$$

Step Two: $u_1, u_2, \ldots, u_n; z_1, z_2, \ldots, z_m$ are linearly independent.

Assume that
$$\mu_1 u_1 + \dots + \mu_n u_n + \lambda_1 z_1 + \dots + \lambda_m z_m = 0^{\bigstar}$$

Now consider: $\lambda_1 w_1 + \dots + \lambda_m w_m = \lambda_1 T(z_1) + \dots + \lambda_m T(z_m)$
$$= \lambda_1 T(z_1) + \dots + \lambda_m T(z_m) + \underbrace{\mu_1 T(\underline{u_1}) + \dots + \mu_n T(\underline{u_n})}_{0}$$

.

$$T(\underbrace{\lambda_1 z_1 + \dots + \lambda_m z_m + \mu_1 u_1 + \dots + \mu_n u_n}_{0 \text{ by } \star}) = 0$$

$$\Rightarrow \lambda_1 w_1 + \dots + \lambda_m w_m = 0$$

$$\Rightarrow w_1 \dots w_m \text{ basis } \lambda_1 = 0 \dots \lambda_m = 0$$

$$\Rightarrow \mu_1 u_1 + \dots + \mu_u u_u = 0$$

$$\mu_1 = \mu_2 = \dots = \mu_n = 0 \text{ since } u_1, \dots, u_n \text{ are basis}$$

Example

Consider a matrix $A \in \mathbb{R}^{3\times 3}$ representing a linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$. Suppose the rank of A is 2 (i.e., the dimension of the image of T is 2), and the nullity of A is 1 (i.e., the dimension of the kernel is 1). The Rank-Nullity Theorem tells us that:

$$\dim(\mathbb{R}^3) = \dim(\ker(A)) + \dim(\operatorname{range}(A)),$$

so:

$$3 = 1 + 2$$

Proposition 9 $T \in \mathcal{L}(V, V)$, V is finite dim. Then the following statements are equivalent:

- T is injective
- \bullet T is surjective
- T is bijective

Proof: Direct consequence of theorem. Also, only holds in finite dimensional spaces

Real world examples

- Proposition 5 importance
 - The range of the subspace is crucial in Principal Component Analysis (PCA), especially when reducing dimensions. PCA projects the data onto a lower-dimensional subspace (the range) that captures as much of the data's variance as possible.
- Pre-images
 - Support Vector Machines (SVMs) work by mapping data to a higher-dimensional space to make the problem linearly separable. The pre-images help make it possible to understand how the original data corresponds to points or subsets in the feature space

2 Matrices and Linear Maps

Notation:

•

$$A = \text{The } j\text{-row} \left\{ \underbrace{\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}}_{n-columns} = (a_{ij})_{i=1,\dots,m,j=1,\dots,n} \right\}$$

Proposition 10 Consider $T \in \mathcal{L}(v, w)$, v, w finite_dim, let $\vec{v_1}, \ldots, \vec{v_n}$ be a basis of V, w_1, \ldots, w_m be a basis of W

- $V = \lambda_1 \vec{v_1} + \dots + \lambda_n \vec{v_n}$ $T(v) = T(\lambda_1 \vec{v_1} + \dots + \lambda_n \vec{v_n})$ $= \lambda_1 T(\vec{v_1}) + \dots + \lambda_n T(\vec{v_n})$
- Each image vector $T\vec{v_j}$ can be expressed in basis w_1, \ldots, w_m : there exist co-coefficients a_1j, \ldots, a_mj s.t,

$$T(v_j) = a_{1j}w_1 + \dots + a_{mj}w_m$$

• we now stack a these co-efficient in a matrix:

$$\begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix}$$

Notation: Let $T: V \to W$ be linear. let B a basis of V, C basis of W. We denote by M(T, B, C) the matrix corresponding to T with respect to bases B and C

Convenient propertied of matrix Let V, W be vector spaces, consider the bases fixed. Let $S, T \in \mathcal{L}(V, W)$

• Linear properties of mapping extend to matrices as well:

$$M(S+T) = M(S) + M(T)$$
$$M(\lambda S) = \lambda M(S)$$

• For $v = \lambda_1 \vec{v_1} + \cdots + \lambda_n \vec{v_n}$, we have that:

$$\underbrace{T(v)}_{\text{image of } v \text{ under } T} = \underbrace{M(T)\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}}_{\text{matrix-vector product}}$$

where $(\vec{v_1}, \ldots, \vec{v_n})$ is a basis of V.

- $T: C \to V; S: V \to W$ linear, then $M(S \circ T) = M(S) \times M(T)$
- $\bullet~\circ$ is the composition of the maps S and T

Additional Properties

- Addition and Scalar Multiplication
 - Commutativity of addition:

$$A + B = B + A$$

– Associativity of addition:

$$A + (B + C) = (A + B) + C$$

- Distributive property for scalar multiplication:

$$c(A+B) = cA + cB$$

- Distributive property for scalars:

$$(c+d)A = cA + dA$$

– Multiplication by scalar 1:

1A = A

• Matrix Multiplication

- Associativity:

$$A(BC) = (AB)C$$

– Distributive Property:

$$A(B+C) = AB + AC$$
 and $(A+B)C = AC + BC$

- Not Commutative:

 $AB \neq BA$ in general (Matrix multiplication is not commutative).

AI = IA = A

- Identity Matrix (I):

• Transpose of a Matrix

- Transpose of transpose:
- Transpose of addition:

$$(A+B)^T = A^T + B^T$$

 $(A^T)^T = A$

- Transpose of scalar multiplication:

$$(cA)^T = cA^T$$

- Transpose of product:

$$(AB)^T = B^T A^T$$
 (Order reverses under transpose).

There are more Properties that will be covered in later lectures

Real world examples

• Matrices are widely used in AI because they provide an efficient way to store and manipulate data in areas such as optimization, neural networks, and computer vision and many more.

3 Indivertible maps and Matrices

Definition 11 $T \in \mathcal{L}(V, W)$ is called invertible if there exist a linear map $S \in \mathcal{L}(w, v)$ such that

$$S \circ T = Id_v$$
 and $T \circ S = Id_w$

The map S is called the inverse of T, denoted by T^{-1}

Remark 12 Inverse maps exist and are unique

Proposition 13 A linear map is invertible if and only if it is bijective

Proof: " \Rightarrow " invertible \Rightarrow injective:

suppose
$$T(u) = T(v)$$
.
Then $u = T^{-1}(T(u))$
 $= T^{-1}(T(v)) = v$
 $\Rightarrow u = v \Rightarrow$ injective \Rightarrow surjective:
 $w \in W$ Then $w = T(T^{-1}(w))$
 $\Rightarrow w \in$ range of $T \Rightarrow$ surjective

" \Leftarrow " injective and surjective \Rightarrow invertible Let $w \in W$ There exists unique $\vec{v} \in V$ s.t T(u) = wDefine the mapping: $S(w) = \vec{v}$. Clearly have $T \circ S = Id$ let $\vec{v} \in V$. Then

$$T((s \circ T)\vec{v}) = (T \circ S)(T\vec{v}) = Id \circ T\vec{v} = T\vec{v}$$
$$\Rightarrow (S \circ T)\vec{v} = \vec{v}$$
$$\Rightarrow S \circ T = Id$$
$$\Rightarrow S \text{ is inverse of } T$$

Still need to show S us a linear mapping. Let $Y_1, Y_2 \in W, \alpha \in F$:

$$S(Y_1 + Y_2) = S(Y_1) + S(Y_2)$$
 and $S(\alpha Y_1) = \alpha S(Y_1)$

Let $x_1, x_2 \in V$ s.t $T(x_i) = y_i$ Then $S(y_i) = x_i$

$$S(Y_1 + Y_2) = S(T(x_1) + T(x_2))$$

= $S(T(x_1 + x_2))$
= $x_1 + x_2$
= $S(Y_1) + S(Y_2)$

$$S(\alpha Y_1) = S(\alpha T(x_1))$$

= $S(T(\alpha x_1))$
= αx_1
= $\alpha S(x_1)$

 $\Rightarrow S$ is a linear transformation

Example using Gaussen elemation

$$A = \begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix} \quad \text{Augment with the identity matrix:} \quad \begin{pmatrix} 4 & 7 & | & 1 & 0 \\ 2 & 6 & | & 0 & 1 \end{pmatrix}$$

Step 2: Divide the first row by 4:
$$\begin{pmatrix} 1 & \frac{7}{4} & | & \frac{1}{4} & 0 \\ 2 & 6 & | & 0 & 1 \end{pmatrix}$$

Step 3: Subtract 2 times the first row from the second row: $\begin{pmatrix} 1 & \frac{7}{4} & \frac{1}{4} & 0\\ 0 & \frac{5}{2} & -\frac{1}{2} & 1 \end{pmatrix}$

Step 4: Multiply the second row by $\frac{2}{5}$: $\begin{pmatrix} 1 & \frac{7}{4} & \frac{1}{4} & 0\\ 0 & 1 & -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$

Step 5: Subtract $\frac{7}{4}$ times the second row from the first row: $\begin{pmatrix} 1 & 0 & \frac{3}{10} & -\frac{7}{10} \\ 0 & 1 & -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$

The inverse is:
$$A^{-1} = \begin{pmatrix} \frac{3}{10} & -\frac{7}{10} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

4 Inverse Matrices

Definition 14 A square matrix $A \in F^{nxn}$ is invertible if there exist a square matrix $B \in F^{nxn}$ such that: $A \times B = B \times A = Identity matrix = Id$

The matrix B is called the inverse matrix , and is denoted by A^{-1}

Proposition 15 The inverse matrix represents the inverse of the corresponding linear map, that is: $T: V \to V$

$$\underbrace{M(T^{-1})}_{(I,I)} = \underbrace{(M(I))^{-1}}_{(I,I)}$$

 $matrix \ of \ inverse \ matrix \ of \ the \ original \ map$

In particular, a matrix in Invertible if and only if the corresponding map is Invertible.

Remark 16

- The inverse matrix does not always exist
- $(A^{-1})^{-1} = A; (A \times B)^{-1} = B^{-1} \times A^{-1}$
- A^t invertible $\Leftrightarrow A$ invertible

$$(A^t)^{-1} = (A^{-1})^t$$

- $A \in F^{nxn}$ invertible $\Leftrightarrow \operatorname{rank}(A) = n$
- The set of all invertible matrices is called general linear group:

$$GL(n, F) = A \in F^{nxn} | A \text{ is invertible}$$

Additional Properties

Inverse of a Matrix

• If A is invertible:

$$A^{-1}A = AA^{-1} = I$$

• Double Inverse Property:

$$(A^{-1})^{-1} = A$$

Take inverse by hand $2x^2$ matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \underbrace{1}_{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

determinant of a 2x2 matrix

Example

$$\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}^{-1} = \frac{1}{4 \times 6 - 7 \times 2} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

Remark 17 Anything bigger than a 2x2 matrix look into using Gauss-Jordan elimination method.

References

https://www.math.ucdavis.edu/ anne/WQ2007/mat67-Lh-Linear_Maps.pdf

https://math.mit.edu/ dyatlov/54summer10/matalg.pdf

 ${\rm https://en.wikipedia.org/wiki/Linear_{m}ap}$