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Linear Mappings
Instructor: Vishnu Boddeti Scribe: Auden Garrard

1 Linear Mapping

Definition 1 Let U, V be vector spaces over the same field F . A mapping T : U → V is called a
linear map if ∀u1, u2 ∈ U and λ ∈ F :

T (u1 + u2) = T (u1) + T (u2)

T (λu1) = λT (u1).

The set of all linear mappings from U → V is denoted is denoted L(U, V ).

If U = V , then we denote L(U)

Examples

• The zero map 0 : V → W , mapping every element v ∈ V to 0 ∈ W , is linear.

• The identity map I : V → V , defined as Iv = v, is linear.

• None linear, For example, the exponential function f(x) = ex is not linear since e2x ̸= 2ex.

• None linear, the function f : F → F given by f(x) = x− 1 is not linear since:

f(x+ y) = (x+ y)− 1 ̸= (x− 1) + (y − 1) = f(x) + f(y).

Definition 2 T ∈ L(U, V ). Then Kernel of T (null-space of T ) is defined as

ker(T ) := null(T ) := {u ∈ U |Tu = 0}

Proposition 3

• ker(T ) is a subspace of U

• T injective if and only if kern(T ) = 0

Definition 4 The range of T (image of T ) is defined as

range(T ) := image(T ) := {Tu|u ∈ U}

X-1



Proposition 5

• The range is always a subspace of V

• T is subjective if and only if range(T ) = V

Definition 6 Let v′ be any subset of V i.e v′ ⊂ The pre-image of v′ is defined as

T−1(v′) := {u ∈ U |Tu ∈ v′}

Proposition 7 If v′ ⊂ V is a subspace of V then T−1(v′ is a subspace of U)

Theorem 8 Let V be a finite-dimensional vector space, W be any vector space, and T ∈ L(V,W ).
Let (u1, . . . , un) be a basis of ker(T ) ⊂ V . Let (w1, . . . , wm) be a basis of range(T ) ⊂ W . Then:

u1, . . . , un, T
−1(w1), . . . , T

−1(wm) ⊂ V

form a basis of V . In particular:

dim(V ) = dim(ker(T )) + dim(range(T )).

Proof: Denote T−1(w1) = z1, . . . , T
−1(Wm) = Zm Step 1: V ⊂ span{u1, . . . , u2, z1; . . . , zm}

Step One: Let v⃗ ∈ V consider Tv ∈ range(T ); Reminder v⃗1, . . . , v⃗n are basis of ker(T )

⇒ ∃λ1, . . . , λms.t.

Tv = λ1w1 + λ2w2 + . . . λmWm

= λ1T (z1) + λ2T (z2) . . . λmzm

= T (λ1z1 + λ2z2 + . . . λmzm)

⇒ Tv − T (λ1z1 + λ2z2 + . . . λmzm) = 0

⇒ T (v − (λ1z1 + λ2z2 + · · ·+ λmzm)︸ ︷︷ ︸
∈ker(T )

= 0

⇒ ∃µ1, . . . µms.t.

v − (λ1z1 + λ2z2 + · · ·+ λmzm) = µ1u1 + µ2u2 + . . . µnun

⇒ v = λ1z1 + λ2z2 + · · ·+ λmzm + µ1u1 + µ2u2 + . . . µnun

Step Two: u1, u2, . . . , un; z1, z2, . . . , zm are linearly independent.

Assume that µ1u1 + . . . µnun + λ1z1 + · · ·+ λmzm = 0⋆

Now consider: λ1w1 + . . . λmwm = λ1T (z1) + . . . λmT (zm)

= λ1T (z1) + . . . λmT (zm) + µ1T (u1) + · · ·+ µnT (un)︸ ︷︷ ︸
0
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T (λ1z1 + · · ·+ λmzm + µ1u1 + · · ·+ µnun)︸ ︷︷ ︸
0 by ⋆

= 0

⇒ λ1w1 + · · ·+ λmwm = 0

⇒ w1 . . . wm basis λ1 = 0 . . . λm = 0

⇒ µ1u1 + · · ·+ µuuu = 0

µ1 = µ2 = · · · = µn = 0 since u1, . . . , un are basis

□

Example

Consider a matrix A ∈ R3×3 representing a linear map T : R3 → R3. Suppose the rank of A is 2
(i.e., the dimension of the image of T is 2), and the nullity of A is 1 (i.e., the dimension of the kernel
is 1). The Rank-Nullity Theorem tells us that:

dim(R3) = dim(ker(A)) + dim(range(A)),

so:

3 = 1 + 2.

Proposition 9 T ∈ L(V, V ), V is finite_dim. Then the following statements are equivalent:

• T is injective

• T is surjective

• T is bijective

Proof: Direct consequence of theorem. Also, only holds in finite dimensional spaces □

Real world examples

• Proposition 5 importance

– The range of the subspace is crucial in Principal Component Analysis (PCA), especially
when reducing dimensions. PCA projects the data onto a lower-dimensional subspace
(the range) that captures as much of the data’s variance as possible.

• Pre-images

– Support Vector Machines (SVMs) work by mapping data to a higher-dimensional space to
make the problem linearly separable. The pre-images help make it possible to understand
how the original data corresponds to points or subsets in the feature space
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2 Matrices and Linear Maps

Notation:

A = The j-row



a11 · · · a1n
...

. . .
...

am1 · · · amn


︸ ︷︷ ︸

n−columns

= (aij)i=1,...,m,j=1,...,n

Proposition 10 Consider T ∈ L(v, w), v,w finite_dim, let v⃗1, . . . , v⃗n be a basis of V , w1, . . . , wm

be a basis of W

•
V = λ1v⃗1 + · · ·+ λnv⃗n

T (v) = T (λ1v⃗1 + · · ·+ λnv⃗n)

= λ1T (v⃗1) + · · ·+ λnT (v⃗n)

• Each image vector T v⃗j can be expressed in basis w1, . . . , wm: there exist co-coefficients a1j, . . . , amj
s.t,

T (vj) = a1jw1 + · · ·+ amjwm

• we now stack a these co-efficient in a matrix:a11 · · · a1j · · · a1n
...

. . .
...

. . .
...

am1 · · · amj · · · amn


Notation: Let T : V → W be linear. let B a basis of V , C basis of W . We denote by M(T,B,C)
the matrix corresponding to T with respect to bases B and C

Convenient propertied of matrix Let V,W be vector spaces, consider the bases fixed. Let
S, T ∈ L(V,W )

• Linear properties of mapping extend to matrices as well:

M(S + T ) = M(S) +M(T )

M(λS) = λM(S)

• For v = λ1v⃗1 + · · ·+ λnv⃗n, we have that:

T (v)︸︷︷︸
image of v under T

= M(T )

λ1

...
λn


︸ ︷︷ ︸

matrix-vector product

where (v⃗1, . . . , v⃗n) is a basis of V .
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• T : C → V ;S : V → W linear, then M(S ◦ T ) = M(S)×M(T )

• ◦ is the composition of the maps S and T

Additional Properties

• Addition and Scalar Multiplication

– Commutativity of addition:
A+B = B +A

– Associativity of addition:
A+ (B + C) = (A+B) + C

– Distributive property for scalar multiplication:

c(A+B) = cA+ cB

– Distributive property for scalars:

(c+ d)A = cA+ dA

– Multiplication by scalar 1:
1A = A

• Matrix Multiplication

– Associativity:
A(BC) = (AB)C

– Distributive Property:

A(B + C) = AB +AC and (A+B)C = AC +BC

– Not Commutative:

AB ̸= BA in general (Matrix multiplication is not commutative).

– Identity Matrix (I):
AI = IA = A

• Transpose of a Matrix

– Transpose of transpose:
(AT )T = A

– Transpose of addition:
(A+B)T = AT +BT

– Transpose of scalar multiplication:

(cA)T = cAT

– Transpose of product:

(AB)T = BTAT (Order reverses under transpose).

X-5



There are more Properties that will be covered in later lectures

Real world examples

• Matrices are widely used in AI because they provide an efficient way to store and manipulate
data in areas such as optimization, neural networks, and computer vision and many more.

3 Indivertible maps and Matrices

Definition 11 T ∈ L(V,W ) is called invertible if there exist a linear map S ∈ L(w, v) such that

S ◦ T = Idv and T ◦ S = Idw

The map S is called the inverse of T , denoted by T−1

Remark 12 Inverse maps exist and are unique

Proposition 13 A linear map is invertible if and only if it is bijective

Proof: "⇒" invertible ⇒ injective:

suppose T (u) = T (v).

Then u = T−1(T (u))

= T−1(T (v)) = v

⇒ u = v ⇒ injective ⇒ surjective:

w ∈ WThen w = T (T−1(w)

⇒ w ∈ range of T ⇒ surjective

"⇐" injective and surjective ⇒ invertible Let w ∈ W There exists unique v⃗ ∈ V s.t T (u) = w

Define the mapping: S(w) = v⃗. Clearly have T ◦ S = Id let v⃗ ∈ V . Then

T ((s ◦ T )v⃗) = (T ◦ S)(T v⃗) = Id ◦ T v⃗ = T v⃗

⇒ (S ◦ T )v⃗ = v⃗

⇒ S ◦ T = Id

⇒ S is inverse of T

Still need to show S us a linear mapping. Let Y1, Y2 ∈ W,α ∈ F :

S(Y1 + Y2) = S(Y1) + S(Y2) and S(αY1) = αS(Y1)

Let x1, x2 ∈ V s.t T (xi) = yi Then S(yi) = xi
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S(Y1 + Y2) = S(T (x1) + T (x2))

= S(T (x1 + x2))

= x1 + x2

= S(Y1) + S(Y2)

S(αY1) = S(αT (x1))

= S(T (αx1))

= αx1

= αS(x1)

⇒ S is a linear transformation

□

Example using Gaussen elemation

A =

(
4 7
2 6

)
Augment with the identity matrix:

(
4 7 1 0
2 6 0 1

)

Step 2: Divide the first row by 4:
(

1 7
4

1
4 0

2 6 0 1

)

Step 3: Subtract 2 times the first row from the second row:
(

1 7
4

1
4 0

0 5
2 − 1

2 1

)

Step 4: Multiply the second row by
2

5
:

(
1 7

4
1
4 0

0 1 − 1
5

2
5

)

Step 5: Subtract
7

4
times the second row from the first row:

(
1 0 3

10 − 7
10

0 1 − 1
5

2
5

)

The inverse is: A−1 =

(
3
10 − 7

10
− 1

5
2
5

)

4 Inverse Matrices

Definition 14 A square matrix A ∈ Fnxn is invertible if there exist a square matrix B ∈ Fnxn such
that: A×B = B ×A = Identity matrix = Id

The matrix B is called the inverse matrix , and is denoted by A−1
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Proposition 15 The inverse matrix represents the inverse of the corresponding linear map, that is:
T : V → V

M(T−1)︸ ︷︷ ︸
matrix of invers map

= (M(I))−1︸ ︷︷ ︸
inverse matrix of the original map

In particular, a matrix in Invertible if and only if the corresponding map is Invertible.

Remark 16

• The inverse matrix does not always exist

• (A−1)−1 = A; (A×B)−1 = B−1 ×A−1

• At invertible ⇔ A invertible
(At)−1 = (A−1)t

• A ∈ Fnxn invertible ⇔ rank(A) = n

• The set of all invertible matrices is called general linear group:

GL(n, F ) = A ∈ Fnxn|A is invertible

Additional Properties

Inverse of a Matrix

• If A is invertible:
A−1A = AA−1 = I

• Double Inverse Property:
(A−1)−1 = A

Take inverse by hand 2x2 matrix

[
a b
c d

]−1

=
1

ad− bc︸ ︷︷ ︸
determinant of a 2x2 matrix

[
d −b
−c a

]

Example [
4 7
2 6

]−1

=
1

4× 6− 7× 2

[
6 −7
−2 4

]
=

1

10

[
6 −7
−2 4

]
=

[
0.6 −0.7
−0.2 0.4

]

Remark 17 Anything bigger than a 2x2 matrix look into using Gauss-Jordan elimination method.
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