CSE 840: Computational Foundations of Artificial Intelligence February 3, 2025 Diagonalization, Triangular Matrices, Metric Spaces, Normed Spaces;p-norms Instructor: Vishnu Boddeti Scribe: Shamsvi Balooni Khan

1 Diagonalization

1.1 Definition

An operator $T \in L(V)$ is **diagonalizable** if there exists a basis of V such that the corresponding matrix is diagonal:

$$M(T) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Example: Any diagonal matrix D is diagonalizable because it is similar to itself. For instance,

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = I_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} I_3^{-1}$$

1.2 Nice Property

The diagonal form is the best since we have the eigenvectors as the basis.

1.3 Proposition

Let V be a finite-dimensional vector space. $A \in L(V)$. Then the following statements are equivalent:

- (P1) A is diagonalizable.
- (P2) The characteristic polynomial P can be decomposed into linear factors, and the algebraic multiplicity of each root of P equals its geometric multiplicity.
- (P3) If $\lambda_1, \ldots, \lambda_k$ are the pairwise distinct eigenvalues of A, then

$$V = E(A, \lambda_1) \oplus E(A, \lambda_2) \oplus \cdots \oplus E(A, \lambda_k)$$

Example of a diagonalizable matrix: SYMMETRIC MATRIX (property- all symmetrix matrices are diagonalizable).

*Not all matrices corresponding to linear maps are diagonalizable, in such cases, the next best thing we can hope for is a Triangular Matrix.

2 Triangular Matrices

A matrix is called **upper triangular** if it has the form:

$$\begin{pmatrix} \lambda_1 & * & * & \cdots & * \\ 0 & \lambda_2 & * & \cdots & * \\ 0 & 0 & \lambda_3 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are diagonal elements, all entries to the left of the diagonal are zeros, and the entries marked with * may be non-zero.

If all the entries both to the left and to the right of the diagonal are zeros, i.e., all the * entries are zero, the matrix reduces to a **diagonal matrix**:

$$\begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

*A diagonal matrix has non-zero entries only on its diagonal, with all off-diagonal elements equal to zero.

=> A square matrix whose all elements above the main diagonal are zero is called a lower triangular matrix.

=> A square matrix whose all elements below the main diagonal are zero is called an upper triangular matrix.

2.1 Proposition

Let $T \in L(V)$, and let $B = \{v_1, v_2, \ldots, v_n\}$ be a basis. Then the following are equivalent:

- (P1) The matrix representation $M(T, \mathcal{B})$ is upper triangular.
- (P2) For any j = 1, 2, ..., n,

$$T(v_j) \in \operatorname{span}\{v_1, v_2, \dots, v_j\}$$

where v_j is a particular vector from the basis \mathcal{B} .

If we apply this linear map to v_1 , we obtain:

$$T(v_1) = \begin{pmatrix} \lambda_1 & a_{12} & a_{13} \\ 0 & \lambda_2 & a_{23} \\ 0 & 0 & \lambda_3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ 0 \\ 0 \end{pmatrix} = \lambda_1 v_1$$

This result lies in the span of v_1 , i.e., $T(v_1) \in \operatorname{span}(v_1)$.

Next, applying T to v_2 :

$$T(v_2) = \begin{pmatrix} \lambda_1 & a_{12} & a_{13} \\ 0 & \lambda_2 & a_{23} \\ 0 & 0 & \lambda_3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{12} \\ \lambda_2 \\ 0 \end{pmatrix} = a_{12} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = a_{12}v_1 + \lambda_2 v_2$$

This result lies in the span of v_1 and v_2 , i.e.,

$$T(v_2) \in \operatorname{span}(v_1, v_2)$$

This process allows us to build a linear operator in a step-by-step manner, where each transformed basis vector $T(v_j)$ is expressed as a linear combination of v_1, v_2, \ldots, v_j .

=> Upper Triangular Matrix **always** has eigenvalues on its diagonal

2.2 Proposition

Suppose $T \in L(V)$, where V is a finite-dimensional vector space, and T has an upper triangular form. Then M(T) has an **upper triangular form** for some **basis**.

*In a COMPLEX FIELD, every matrix can be expressed as an Upper Triangular matrix.

2.3 Proposition

Suppose $T \in L(V)$, where V is a finite-dimensional vector space, and T has an upper triangular form, then the entries on the diagonal are precisely the eigenvalues of T.

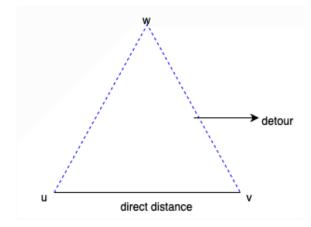
3 Metric Spaces

3.1 Definition

Let X be a set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** if the following conditions hold:

(P1) d(u, v) > 0 if $u \neq v$, and d(u, u) = 0.

- (P2) d(u, v) = d(v, u) (symmetry).
- (P3) $d(u,v) \le d(u,w) + d(w,v)$ (triangle inequality).



d(u,v) is the direct distance.

=> Distance between the points must be positive.

3.2 Definition - Sequences

Sequence is basically an ordered set of elements.

A sequence (x_n) in a metric space (X, d) is called a **Cauchy sequence** if:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m > N, d(x_n, x_m) < \epsilon$$

=> Beyond a certain value of N, looking at the points, those points are going to be no further apart than ϵ , i.e., these points will get closer and closer to each other as we go further in the sequence or increase the index of the sequence.

=> Every convergent sequence is a Cauchy Sequence.

3.3 Definition - Converge

A sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n > N, d(x_n, x) < \epsilon$

This means the points in the sequence get arbitrarily close to x as n increases.

*The point to which the sequence is converging also belongs to the set.

Notation:

$$x_n \to x$$
 or equivalently $\lim_{n \to \infty} x_n = x$

Consider the sequence $(x_n)_{n \in \mathbb{N}} = \frac{1}{n}$ on X = (0, 1) (an open set).

Here, $(x_n)_{n \in \mathbb{N}}$ is a **Cauchy sequence**, but it does **not converge** in X.

(Note: All values are between 0 and 1, but 0 and 1 are not included in the set.

*The sequence is approaching 0, which is not in X.)

Now consider the sequence $(x_n)_{n \in \mathbb{N}} = \frac{1}{n}$ on $\overline{X} = [0, 1]$ (a closed set).

Here, $(x_n)_{n \in \mathbb{N}}$ is a **Cauchy sequence** that **converges** in \overline{X} to 0.

3.4 Definition - Complete

A metric space is called **complete** if every Cauchy sequence converges.

Example: The set of real numbers \mathbb{R} with the standard metric is a **complete** set.

3.5 Definition - Epsilon ball

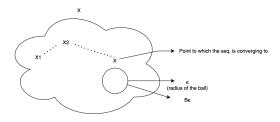
The Epsilon-Ball (ϵ -ball) around a point x is denoted by $B_{\epsilon}(x)$ and defined as:

$$B_{\epsilon}(u) := \{ x \in X \mid d(x, u) < \epsilon \}$$

Where B_{ϵ} is the Epsilon-Ball

 B_{ϵ} is defined as a set of points in a set X, such that the distance from x to u is less than (or equal to) ϵ .

This represents the set of all points in X whose distance from u is less than ϵ .



*If we can draw a B_{ϵ} around a point, then that set is open (does not include the boundary).

 $*\epsilon > 0$

***Open Set:** $A \subseteq X$ (A is a subset of X.)

*Boundary: ∂A (All the points whose distance is less than ϵ)

*Closed Set: $A \cup \partial A$ (taking an open set and adding the boundary points to it)

3.6 Definition - Closed Set

A set $A \subseteq X$ is called **closed** if every Cauchy sequence in A converges to a limit in A. **Limit point: the point to which the Cauchy Sequence is converging to

3.7 Definition - Open set

A set $A \subset X$ is called **open** if:

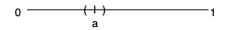
$$\forall a \in A, \exists \epsilon > 0 : B_{\epsilon}(a) \subset A$$

* Open sets can be bounded too.

3.8 Examples of Sets

= Closed: [0,1]; 0,1, set of all real numbers

=> Open: (0,1)



Here, $\mathbf{B} = (\varepsilon, a + \varepsilon)$

=> A set can be neither open nor closed, eg: [0,1)

=> A set can be both open and closed

3.9 Definition - Interior Point

Def: A point $a \in A$ is an **interior point** of A if

 $\exists \varepsilon > 0$, such that $B_{\varepsilon}(a) \subset A$

e.g. A = [0, 1], then $x \in (0, 1)$ are interior points.

3.10 Definition - Closure

Definition: The (topological) **closure** of a set A is defined as the set of points that can be approximated by Cauchy sequences in A:

 $w \in \overline{A} \iff \forall \varepsilon > 0, \exists z \in A : d(w, z) < \varepsilon$

Here, we basically take the open set A and its union with all of the boundary points.

Notation: \overline{A} is the closure of A.

* $A \cup \partial A$, is always closed.

3.11 Definition - (Topological)Interior

The **interior** of a set A is defined as the set of interior points of A:

Notation: A°

3.12 Definition - (Topological) Boundary

The **boundary** of a set A is defined as the set:

 $\overline{A} \setminus A^\circ$

* We simply take the closure and remove the interior.

Examples:

$$X = \{0, 1\}$$

$$\overline{X} = [0, 1] \quad \text{(closure)}$$

$$X^{\circ} = (0, 1) \quad \text{(interior)}$$

$$\Rightarrow \text{ boundary } \quad \partial X = \overline{X} \setminus X^{\circ} = \{0, 1\}$$

sometimes $\quad \partial X = X \setminus X^{\circ} = \{0\}$

3.13 Definition - Dense

A set A is **dense** in X if we can approximate **every** $x \in X$ by a sequence in A.

Formally,
$$\forall x \in X, \ \forall \varepsilon > 0, \ B_{\varepsilon}(x) \cap A \neq \emptyset$$

Example: $\mathbb{Q} \subset \mathbb{R}$ is dense in \mathbb{R} .

*Taking any real number, we can have a sequence of rational numbers that can get arbitrarily close to the real number, however the sequence will never reach the real number.

3.14 Definition - Bounded

A set $A \subset X$ is **bounded** if there exists D > 0 such that

$$\forall u, v \in A, \quad d(u, v) \le D$$

* Where D is some scalar

* Taking any 2 pairs of points from set A, then the largest possible distance is smaller than D

* D > 0

4 Norms

In general, there are no algebraic operations defined on a metric space, only a distance function. Most of the spaces that arise in analysis are vector, or linear, spaces, and the metrics on them are usually derived from a norm, which gives the "length" of a vector

4.1 Definition

Let V be a vector space. A norm on V is a function $\|\cdot\|: V \to \mathbb{R}$ such that for all $x, y \in V$ and $\lambda \in \mathbb{F}$, the following conditions hold:

$(P1) \ \lambda x\ = \lambda \ x\ $	(homogeneous)
(P2) $ x+y \le x + y $	(triangle inequality)
$(P3) \ x = 0 \implies x = 0$	$(norm \ property)$
$(P4) x = 0 \implies x = 0$	(vector property)

 $\|\cdot\|$ is a **semi-norm** if (P1)–(P3) are satisfied.

Intuition: The norm of x represents the "length of x" or the distance between (x, 0), (where 0 is the origin).

Example:

• Euclidean norm on \mathbb{R}^d :

$$||x|| = \left(\sum_{i=1}^{d} x_i^2\right)^{1/2}$$

Each x_i is one of the coordinates of **x**

• Manhattan distance:

$$||x|| = \sum_{i=1}^{d} |x_i|$$

Absolute value of the coordinates of **x**

4.2 P-Norm

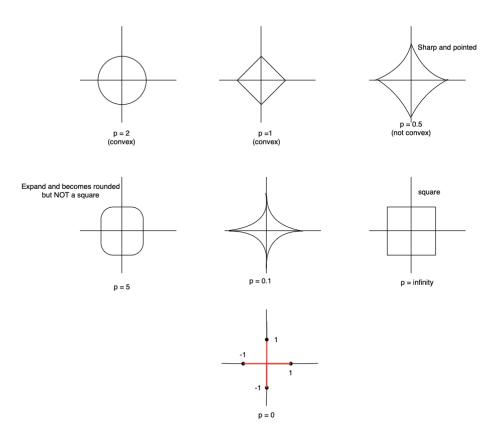
Consider $V = \mathbb{R}^d$. Define:

$$||x||_p := \left(\sum_{i=1}^d |x_i|^p\right)^{1/p} \text{ for } 0$$

- $\|\cdot\|_p$ is a **norm** if $p \ge 1$.
- Unit balls: The unit ball of a norm is the set of points such that:

$$B_p := \{ x \in \mathbb{R}^d \mid ||x||_p \le 1 \}$$

Examples:



Def:

 $||x||_{\infty} := \max |x_i| \quad \text{(is a norm)}$

This represents the maximum value over the coordinates of the vector.

 $||x||_0 :=$ number of non-zero coordinates

This can be written as:

$$\|x\|_0 = \sum_{i=1}^d \mathbf{1}_{\{x_i \neq 0\}}$$

where **1** is the indicator function, which equals 1 when the condition $x_i \neq 0$ is satisfied and 0 otherwise.

Note: $||x||_0$ is not a norm.

Example:

$$x = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad \|x\|_0 = 1$$
$$\lambda x = \begin{bmatrix} 5\\0 \end{bmatrix}, \quad \|\lambda x\|_0 = 1 \quad (\lambda = 5)$$

 $\|\lambda x\|_0 \neq \lambda \|x\|_0$

5 References

Diagonalization. (n.d.). https://textbooks.math.gatech.edu/ila/diagonalization.html

Triangular Matrix - Lower and upper triangular matrix, examples. (n.d.). Cuemath. https://www.cuemath.com/algebra/matrix/

Bert, M. (n.d.). Metric spaces. In Metric Spaces (pp. 93–96). https://www.math.ucdavis.edu/ hunter/m125a/introanalys